Université de Liège

Examen d'admission aux études de bachelier ingénieur civil et architecte

SIMULATION D'EXAMEN

TRIGONOMÉTRIE ET CALCUL NUMÉRIQUE

Prof. M. Hogge et P. Duysinx

Mai 2012

Nous présentons ici une voie de solution pour chaque problème, à titre d'exemple. Il va de soi que toute autre méthode correcte est admise lors de la correction

Question 1 Les angles d'un triangle ABC sont a, b, c.

Montrer que le triangle ABC est rectangle si et seulement si

$$\sin(4a) + \sin(4b) + \sin(4c) = 0$$

Solution

Partie 1: Si le triangle est rectangle, alors $\sin(4a) + \sin(4b) + \sin(4c) = 0$ Supposons que $a = \frac{\pi}{2}$, alors

$$\sin 4a \, = \, \sin 2\pi \, = \, 0$$

En outre dans un triangle on a toujours $a+b+c=\pi$. Il vient

$$4b = 4\pi - 4\pi/2 - 4c = 2\pi - 4c$$

soit

$$\sin(4b) = \sin(2\pi - 4c) = \sin(-4c) = -\sin(4c)$$

Au total, il vient:

$$\sin(4a) + \sin(4b) + \sin(4c) = 0$$

Partie 2 Supposons que $\sin(4a) + \sin(4b) + \sin(4c) = 0$, alors le triangle est rectangle.

Dans tout triangle, on a $a + b + c = \pi$. Soit

$$a + b + + c = \pi$$

$$\Leftrightarrow 4a + 4b + 4c = 4\pi$$

$$\Leftrightarrow 4a = 4\pi - (4b + 4c)$$

$$\Leftrightarrow 4a = 4\pi - (4b + 4c)$$

$$\Leftrightarrow \sin(4a) = -\sin(4b + 4c)$$

$$\Leftrightarrow \sin(4a) = -(\sin(4b)\cos(4c) + \cos(4b)\sin(4c))$$

Remplaçons cette expression dans l'hypothèse, il vient :

$$\sin(4a) + \sin(4b) + \sin(4c) = -\sin(4b)\cos(4c) - \cos(4b)\sin(4c) + \sin(4b) + \sin(4c)$$

$$\Leftrightarrow \sin(4b)(1 - \cos(4c)) + \sin 4c (1 - \cos(4b)) = 0$$

En utilisant les formules de duplication, il vient

$$\sin(4b) \ 2 \sin^2(2c) + \sin(4c) \ 2 \sin^2(2b) = 0$$

 $\Leftrightarrow 4 \sin(2b) \cos(2b) \sin^2(2c) + 4 \sin(2c) \cos(2c) \sin^2(2b) = 0$
 $\Leftrightarrow 4 \sin(2b) \sin(2c) [\sin(2c) \cos(2b) + \cos(2c) \sin(2b)] = 0$
 $\Leftrightarrow 4 \sin(2b) \sin(2c) [\sin(2b + 2c)] = 0$

Première possilité : $\sin(2b) = 0$. Il vient : $b = \pi/2$ et le triangle est rectangle en B.

Seconde possibilité : $\sin(2c)=0$. Il vient : $c=\pi/2$ et le triangle est rectangle en C.

Troisième possibilité : $\sin(2b+2c)=0$. Il vient : $b+c=\pi/2$. Puisque $a+b+c=\pi$, on a $a=\pi/2$ et le triangle est rectangle en A.

Une autre solution assez souvent trouvées dans les copies d'examen est la suivante :

On utilise la formule de Simpson :

$$\begin{array}{rcl} \sin 4a \; + \; \sin 4b & = & 2 \; \sin (\frac{4a+4b}{2}) \; \cos (\frac{4a-4b}{2}) \\ & = & 2 \; \sin (2a+2b) \; \cos (2a-2b) \end{array}$$

et la formule de duplication:

$$\sin 4c = 2 \sin 2c \cos 2c$$

En tenant compte de la somme des angles dans les triangles, il vient :

$$a+b+c = \pi$$

 $2a+2b = 2\pi - 2c$
 $\sin(2a+2b) = \sin(2\pi - 2c) = -\sin 2c$
 $\cos(2a+2b) = \cos(2\pi - 2c) = \cos 2c$

Dès lors l'identité s'écrit :

$$\sin(4a) + \sin(4b) + \sin(4c) = 0$$

 $\Leftrightarrow 2 \sin(2a + 2b) \cos(2a - 2b) + 2 \sin 2c \cos 2c = 0$
 $\Leftrightarrow 2 \sin 2c (\cos(2a + 2b) - \cos(2a - 2b)) = 0$

En utilisant la formule d'addition, il vient

$$\sin(4a) + \sin(4b) + \sin(4c) = 0$$

$$\Leftrightarrow 2 \sin 2c (\cos 2a \cos 2b - \sin 2a \sin 2b - \cos 2a \cos 2b + 2 \sin 2a \sin 2b) = 0$$

$$\Leftrightarrow 4 \sin 2a \sin 2b \sin 2c = 0$$

Les conclusions sont alors évidentes.

Remarques

Les erreurs les plus fréquentes sont

- Ne pas démontrer les deux parties du si et seulement, ce qui donne lieu à la moitié des points au maximum;
- Faire une erreur dans l'application (ou ne pas connaître) des formules, spécialement dans l'application de la formule de Simpson;
- Inventer des formules : par exemple $\,$

$$\sin 4c = 4 \sin c \cos c$$

- Faire une erreur dans les formules liées aux angles associés : Par exemple

$$\sin(2a + 2b) = \sin(2\pi - 2c) = \sin 2c!!!$$

3

Question 2 Résoudre l'équation :

$$\sqrt{3} \sin^2 x + \sin x \cos x + 2\sqrt{3} \cos^2 x = \frac{\sqrt{2}}{2} + \frac{3\sqrt{3}}{2}$$

Représenter les solutions sur le cercle trigonométrique.

Solution

L'équation s'écrit :

$$\sqrt{3} \sin^2 x + \sin x \cos x + 2\sqrt{3} \cos^2 x = \frac{\sqrt{2}}{2} + \frac{3\sqrt{3}}{2}$$

$$\Leftrightarrow \sqrt{3} \sin^2 x + \sin x \cos x + 2\sqrt{3} \cos^2 x = (\frac{\sqrt{2}}{2} + \frac{3\sqrt{3}}{2})(\sin^2 x + \cos^2 x)$$

$$\Leftrightarrow (\sqrt{3} - \frac{\sqrt{2}}{2} - \frac{3\sqrt{3}}{2}) \sin^2 x + \sin x \cos x + (2\sqrt{3} - \frac{\sqrt{2}}{2} - \frac{3\sqrt{3}}{2}) \cos^2 x = 0$$

$$\Leftrightarrow (\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}) \sin^2 x - \sin x \cos x + (\frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2}) \cos^2 x = 0$$

On peut diviser l'équation par $\cos^2 x$ car on vérifie aisément que $x=90^\circ+k$ 180° ne fait pas partie des solutions de l'équation. Il vient :

$$\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\right) \operatorname{tg}^{2} x - \operatorname{tg} x - \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\right) \cos^{2} x = 0$$

Résolvons l'équation du second degré en $\operatorname{tg} x$

$$\rho = 1 + 4\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\right) = 2$$

et

$$\operatorname{tg} x = \frac{1 \pm \sqrt{2}}{2(\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2})} = (1 \pm \sqrt{2})(\sqrt{3} - \sqrt{2})$$

La première solution s'écrit

$$\operatorname{tg} x = (1 + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 0,7673$$

et

$$x^{(1)} = 37.5^{\circ} + k \, 180^{\circ}$$

La seconde solution s'écrit

$$tg x = (1 - \sqrt{2})(\sqrt{3} - \sqrt{2}) = -0,1317$$

et

$$x^{(2)} = -7.5^{\circ} + k \, 180^{\circ}$$

On représente aisément ces solutions sur le cercle trigonométrique