CONCEPTION DES ENGRENAGES Partim 3: Exercices Méthode AGMA

Pierre Duysinx

Aérospatiale & Mécanique Année académique 2020-2021

LAY-OUT

- Rappel de théorie
 - Choix de la géométrie des engrenages
 - Vérification des dentures selon l'AGMA
- Dimensionnement des engrenages selon AGMA
 - Ex1 denture droite
 - Ex2 denture droite
 - Ex3 denture hélicoïdale

DIMENSIONNEMENT DES ENGRENAGES A DENTURES DROITES

Détermination géométrie approchée dentures droites

Nombre de dents Z_1 et du diamètre primitif d_{01} du pignon

 Le diamètre primitif d₀₁ supérieur de deux modules au diamètre de pied

$$d_{01} - 2, 5 m = d_{01} \left(1 - \frac{2, 5}{Z_1} \right) \ge C \cdot d$$

- avec C = 1,2 pour un pignon arbré C = 1,8 pour un pignon rapporté
- d diamètre de l'arbre portant le pignon, compte tenu éventuellement d'une rainure de cale si nécessaire.
- D'où la formule

$$d_{01} \ge \frac{C \cdot d \cdot Z_1}{Z_1 - 2, 5}$$

Le diamètre primitif d₀₁ sera déterminé si on connaît Z₁ et vice versa

Nombre de dents Z_1 et du diamètre primitif d_{01} du pignon

Pignon rapporté

Choix du nombre de dents Z₁

□ On choisit le nombre de dents Z₁ en respectant la règle DIN

$$20 < Z_1 < 25 \text{ si } 5 \, m/s < v_0
18 < Z_1 < 22 \text{ si } 1 \, m/s < v_0 < 5 \, m/s$$

$$v_0 = \frac{\pi \, d_{01} \, N}{60}
15 < Z_1 < 20 \text{ si } v_0 < 1 \, m/s$$

 $Z_1 = 20$ appartient à tous les domaines. On le choisit comme première approximation

$$d_{01} = \frac{20 \, C \cdot d}{20 - 2.5}$$

Soit

$$d_{01} = 1,37 d$$
 pour un pignon arbré $d_{01} = 2,05 d$ pour un pignon rapporté

Choix du module m

Module théorique (candidat module)

$$m^{\star} = \frac{d_{01}}{Z_1}$$

 Ajuster le nombre de dents à une valeur supérieure dans la série de Renard.

Tableau LII Module métrique m, pas primitif p et pas de base p_b

Modules 0,5 à 1,5				Modules 2	à 6	Modules 8 à 25		
m	p	p _b	m	p	p _b	m	p	p _b
0,5	1,570 796	1,476 066	2	6,283 185	5,904 263	8	25,132 74	23,617 05
0,6	1,884 956	1,771 279	2,5	7,853 982	7,380 329	10	31,415 93	29,521 31
0,8	2,513 274	2,361 705 2,952 131	3	9,424 778	8,856 394	12	37,699 11	35,425 58
1	3,141 593		4	12,566 371	11,808 526	16	50,265 48	47,234 10
1,25	3,926 991	3,690 164	5	15,707 963	14,760 657	20	62,831 85	59,042 63
1,5	4,712 389	4,428 197	6	18.849 556	17,712 789	25	78,539 82	73,803 29

Choix du module m

Module théorique (candidat module)

$$m^{\star} = \frac{d_{01}}{Z_1}$$

- Ajuster le nombre de dents à une valeur supérieure dans la série de Renard.
- On obtient un nouveau diamètre primitif

$$d_{01} = 20 \, m$$

 \Box On ajuste le nombre de dents Z_1 si nécessaire

Choix de Z_2 , d_{02}

□ Supposons qu'on connaît $i=Z_2/Z_1$, on prend

$$Z_2^* = i Z_1$$

- □ On sélectionne Z₂:
 - Entier

$$Z_2 \in N$$

Z₂ et Z₁ premiers entre eux

$$PGCD(Z_1, Z_2) = 1$$

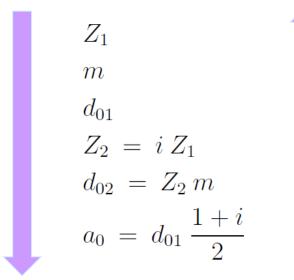
Une erreur sur le rapport de réduction réel plus petit que 3% ou 5%

$$i_{reel} = \frac{Z_2}{Z_1}$$

$$\Delta i = \frac{i_{reel} - i_{th}}{i_{ith}} \le 3 \%$$

Calcul de l'entraxe

Calcul de l'entraxe


$$d_{01} = Z_1 \cdot m$$

$$d_{02} = Z_2 \cdot m$$

$$a = \frac{d_{01} + d_{02}}{2} = d_{01} \frac{1 + i_{reel}}{2}$$

Cycle itératif de conception

On mène un calcul itératif jusqu'à convergence

(boucler si entraxe imposé)

Remarque si a_0 et i sont donnés alors on a aussi d_{01} et d_{02} .

$$a_{0,reel} = \frac{d_{01} + d_{02}}{2}$$
$$i_{reel} = \frac{d_{02}}{d_{01}}$$

Choix des largeurs b₁ et b₂

- Les largeurs b₁ et b₂ sont choisies dans un premier temps en respectant les règles de bonne pratique suivantes.
- Règle 1: la largeur de la roue (2) est plus faible que celle du pignon (1):

$$b_2 = 0.9 b_1 \qquad b_1 - b_2 \le 5 \, mm$$

- Règle 2: b₁ doit être choisi de manière à choisir des paramètres géométriques compatibles avec l'application
 - Paramètre $\psi_d = b_1/d_{01}$
 - Paramètre $\psi_m = b_1/m$
 - Comme b_{1m} et b_{1d} sont généralement différents, on prend la valeur moyenne des deux
 - On arrondit la valeur pour faciliter la fabrication

Choix des largeurs b₁ et b₂

□ Paramètre ψ_d=b₁/d₀₁

 Faible vitesse (v<1 m/s), denture et pivoterie de qualité moyenne (roue folle, crabotage)

$$\psi_d = 0.23 + 0.0857 i$$

 Vitesse moyenne (1<v<5 m/s), denture et pivoterie de bonne qualité normale.

$$\psi_d = 0.50 + 0.0857 i$$

 Grande vitesse (v>5 m/s) et durée de vie élevée; denture et pivoterie très soignées

$$\psi_d = 0.80 + 0.0857 i$$

 Très grande vitesse (v>>5 m/s) durée de vie élevée; la meilleure précision pour l'ensemble.

$$\psi_d = 1,20 + 0,0857 i$$

Choix des largeurs b₁ et b₂

- Paramètre ψ_m=b₁/m
 - Denture coulée, de mauvaise qualité.

$$8 < \psi_m < 10$$

 Denture soignée mais problème de parallélisme, déformée d'arbre (roue en porte-à-faux).

$$10 < \psi_m < 15$$

Denture soignée et parallélisme très correct.

$$15 < \psi_m < 30$$

 Meilleure qualité de denture, appui très rigide et excellent parallélisme.

$$30 < \psi_m$$

Vérification de la résistance des dentures Dentures droites

Le calcul de l'AGMA est basé sur le calcul d'une contrainte représentative d'état de tension dû à la flexion de la dent

$$\sigma = \frac{F_t}{b \, m \, J} \, \frac{K_a \, K_m}{K_v} \, K_s \, K_B \, K_I$$

- Où l'on introduit un certain nombre de coefficients pour rendre compte de l'état de contrainte réel.
- On le compare ensuite à une tension admissible représentative de la capacité de la matière à soutenir des contraintes de flexion en fatigue.

$$S_{at} = R_{\phi} \frac{Y_N}{S_F Y_{\theta} Y_Z}$$

 Le calcul de l'AGMA vérifie également la résistance à la fatigue de surface due à l'application d'une pression de contact

$$p_{max} = C_p \sqrt{\frac{F_t}{b d_0 I} \frac{C_a C_m}{C_v} C_s C_f}$$

- Où l'on introduit un certain nombre de coefficients pour rendre compte de l'état de contrainte réel.
- On le compare ensuite à une pression admissible représentative de la capacité de la matière à soutenir le pitting (fatigue de surface).

 $S_{ac} = R_{pe,\phi} \frac{Z_N Z_W}{S_F Y_\theta Y_Z}$

- La largeur de la dent b ou F [mm]
- Module m [mm]
- J ou I facteur de forme pour la flexion ou la pression de contact
- K_a, C_a: facteurs d'application de la charge
- □ K_m, C_m: facteurs de distribution de la charge sur la largeur
- \Box $K_v = C_v$: facteurs dynamiques
- □ K_S, K_B, K_I: facteurs d'échelle, facteur de jante, facteur de roue folle
- \Box Y_N , Z_N facteurs de durée de vie (autre que 10^7 cycles).
- Υ_θ Facteur de température de fonctionnement élevée.
- Y_z facteur de probabilité de rupture si différent de 0,99.
- Y_w facteur de dureté.
- S_F facteur de sécurité supplémentaire (1,5).

 L'AGMA 2018.01 reformule ces contraintes admissibles sous forme de <u>puissances transmissibles</u>

$$\sigma = \frac{F_t}{b m J} \frac{K_a K_m}{K_v} K_s K_B K_I \leq S_{at}$$

Peut se réécrire

$$F_t \leq S_{at} \, b \, m \, J \, \frac{K_v}{K_a \, K_m \, K_s \, K_B \, K_I}$$

Etant donné que

$$F_t = \frac{\mathcal{P}}{v} = \frac{\mathcal{P} 60}{\pi d_0 N}$$

On peut écrire

$$\frac{\mathcal{P} \, 60}{\pi \, d_0 \, N} \, \leq \, S_{at} \, b \, m \, J \, \frac{K_v}{K_a \, K_m \, K_s \, K_B \, K_I}$$

$$\mathcal{P}_{ac} \leq S_{at} \frac{\pi}{60} d_0 N b m J \frac{K_v}{K_a K_m K_s K_B K_I}$$

- En adoptant les unités suivantes
 - P [kW]
 - N [tr/min]
 - b [mm], d₀ [mm]
 - S_{at} [Mpa]

$$\mathcal{P}_{ac} \leq \frac{N b}{1,9098 \ 10^7} \ \frac{J K_v}{K_a K_m K_s K_B K_I} d_0 m S_{at}$$

 De même pour la pression admissible on peut faire un développement similaire pour mettre en évidence la puissance transmissible au lieu de la pression de contact

$$p_{max} = C_p \sqrt{\frac{F_t}{b d_0 I} \frac{C_a C_m}{C_v} C_s C_f} \le S_{at}$$

Peut se réécrire

$$F_t \leq S_{ac}^2 \frac{b d_0 I}{C_p^2} \frac{C_v}{C_a C_m C_s C_f}$$

Etant donné que

$$F_t = \frac{\mathcal{P}}{v} = \frac{\mathcal{P} 60}{\pi d_0 N}$$

Il vient

$$\frac{\mathcal{P} 60}{\pi d_0 N} \le S_{ac}^2 \frac{b d_0 I}{C_p^2} \frac{C_v}{C_a C_m C_s C_f}$$

Peut se réécrire

$$\mathcal{P} \leq \frac{\pi \, d_0 \, N}{60} \, S_{ac}^2 \, \frac{b \, d_0 \, I}{C_p^2} \, \frac{C_v}{C_a \, C_m \, C_s \, C_f}$$

Soit au final la condition et avec les unités choisies

$$\mathcal{P}_{ac} \leq \frac{N b}{1,9098 \ 10^7} \frac{I C_v}{C_a C_m C_s C_f} \left[\frac{d_0 S_{ac}}{C_p} \right]^2$$

- Avec
 - P [kW]

- b [mm]– N [tr/min]

S_{ac} [Mpa]

 $- d_0 [mm]$

 $- C_{\rm D} [MPa^{1/2}]$

- m [mm]

Vérification des dents à la flexion et à la pression de contact selon approche AGMA

- La denture sera vérifiée en écrivant l'équation de la puissance maximale transmissible respectivement à la pression superficielle (pitting) et à la flexion.
- Puissance transmissible à la pression (AGMA)

$$P_{ac} = \frac{N_p b}{1,91 \, 10^7} \, \frac{I \, C_v}{C_{SF}} \, \left[\frac{d \, S_{ac}}{C_p} \right]^2$$

Puissance transmissible à la flexion (AGMA)

$$P_{at} = \frac{N_p b}{1,91 \ 10^7} \ \frac{J \ K_v}{K_{SF}} \ d \ S_{at} \ m$$

- Soit à transmettre 110 kW via un réducteur (i = 4) à engrenages à denture droite. L'arbre d'entrée tourne à 500 tr/min. Le pignon est calé sur l'arbre.
- Recherchez les caractéristiques de l'engrènement $(Z_1, Z_2, d_{01}, d_{02}, m, b_1, b_2)$ et faites un choix de matériau pour le pignon.
- Entraînement par moteur électrique, démarrage moyen. Chocs raisonnables, 16 h/jour, durée de vie 50 000 heures.

Exercice 1:

Caractéristiques des engrenages

On peut démarrer avec le diamètre primitif du pignon.

$$d_{01} - 2.5 m = d_{01} \left(1 - \frac{2.5}{Z_1} \right) \ge C d$$

- C=1,8 pignon rapporté (=calé)
- En prenant un nombre de dents au pignon valant $Z_1 = 20$, nous pouvons déduire la valeur minimale que doit avoir le diamètre primitif en fonction du diamètre de l'arbre :

$$d_{01} = 2,05.d$$

Exercice 1:

- Connaissant la puissance et la vitesse de rotation, on calcule d par la formule des arbres de manège (à défaut d'une autre donnée!).
- Le rapport P/N étant inférieur à l'unité, nous avons avec la formule des arbres de manège:

$$d_n[mm] = 130 \sqrt[n]{\frac{p[kW]}{N[tr/min]}} = \sqrt[4]{\frac{110}{500}} = 89,03 mm$$

Diamètre extérieur de l'arbre (habillage) :

$$d = 89 + 2t_1 = 89 + 210 = 109 \, mm$$

On trouve

$$d_{01} = 2,05\,109 = 223,45\,mm$$

On en déduit le module théorique

$$m^{\star} = \frac{d_{01}}{Z_1} = \frac{223,45}{20} = 11,1725 \, mm$$

Il est normalisé à

$$m = 12$$

OT 2 D				(rmalisées du				
valeurs secondaires en mm				valeurs principales en mm					
22	5,5	1,125	0,28	0,07	20	5	1,25	0,25	0,06
28	7	1,375	0,35	0,09	25	6	1,5	0,30	0,08
36	9	1,75	0,45	0,11	32	8	2	0,40	0,10
45	11	2,75	(0,55)	0,14	40	10	2,5	(0,50)	0,12
55	14	3,5	(0,7)	0,18	50	12	3	(0,80)	0,15
70	18	4,5	(0,9)	0,22	60	16	4	1,0	0,20

() entre parenthèses, ancienne normalisation

 Nous recalculons la valeur du diamètre primitif correspondant au module normalisé :

$$d_{01} = 20 \, 12 = 240 \, mm$$

On calcule ensuite les caractéristiques de la roue dentée.

$$Z_2 = Z_1 i = 204 = 80$$

En bonne pratique, on choisit deux nombres premiers entre eux pour minimiser l'usure même si on commet une petite erreur de rapport de réduction. On prend donc :

$$Z_2 = 79 \text{ dents}$$
 $i = 79/20 = 3.95$
$$\Delta i = \frac{i_{reel} - i_{th}}{i_{ith}} = \frac{3.95 - 4}{4} - 1.25 \% \le 3 \%$$

L'entraxe a₀ est de

$$a_0 = \frac{d_{01} + d_{02}}{2} = \frac{Z_1 + Z_2}{2} m = Z_1 m \frac{1+i}{2}$$

= 594 mm

Largeur des dents

On calcule le ratio

$$\psi_d = \frac{b_1}{d_{01}}$$

Vitesse tangente au diamètre primitif

$$v_t = \frac{\pi \, d_{01} \, N}{60} = 6,28 \, m/s$$

On utilise la formule

$$\psi_d = 0.8 + 0.0857 i = 0.8 + 0.0857 \frac{79}{20} = 1.1385$$

Il vient

$$b_1 = \psi_d d_{01} = 1,13851220 = 273,24 \, mm$$

soit

$$b_1 = 273 \ mm$$

Largeur des dents

D'autre part

$$b_2 = 0.9 b_1 = 246 mm$$

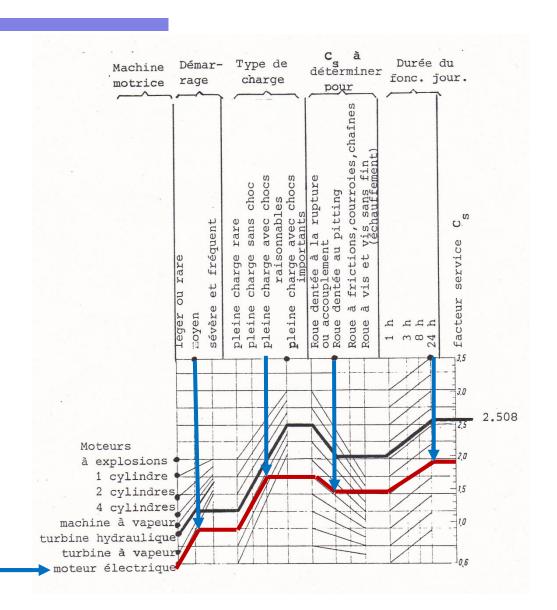
□ Si b_1 - b_2 <5 mm, alors on garde b_2 , sinon (c'est la cas ici)

$$b_2 = b_1 - 5 \, mm = 268 \, mm$$

Vérification des dents à la flexion et à la pression de contact selon approche AGMA

- La denture sera vérifiée en écrivant l'équation de la puissance maximale transmissible respectivement à la pression superficielle (pitting) et à la flexion.
- Puissance transmissible à la pression (AGMA)

$$P_{ac} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{I \, C_v}{C_{SF}} \, \left[\frac{d \, S_{ac}}{C_p} \right]^2$$


Puissance transmissible à la flexion (AGMA)

$$P_{at} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{J \, K_v}{K_{SF}} \, d \, S_{at} \, m$$

Puissance transmissible à la pression de contact

$$P_{ac} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{I \, C_v}{C_{SF}} \, \left[\frac{d \, S_{ac}}{C_p} \right]^2$$

- N_D vitesse de rotation: 500 tr/min
- Largeur de la roue: b=b₂=268 mm
- Rapport de réduction i=3,95
- Diamètre primitif d=d₀₁=240 mm
- Facteur de service: suivant Richter Ohlendorff C_{sf}=2,0
 - Entraînement par moteur électrique, démarrage moyen.
 Chocs raisonnables, 16 h/jour, durée de vie 50 000 heures

Puissance transmissible à la pression de contact

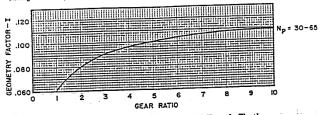
$$P_{ac} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{I \, C_v}{C_{SF}} \, \left[\frac{d \, S_{ac}}{C_p} \right]^2$$

- Facteur géométrique I: I=0,108
- Facteur Dynamique Cv: Qv=7 (hypothèse)

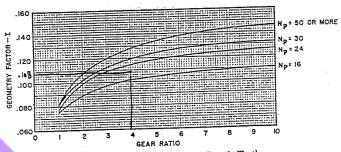
$$C_v = K_v = \left[\frac{A}{A + \sqrt{200 v_t}}\right]^B$$

$$B = \frac{(12 - Q_v)^{0,667}}{4} \qquad A = 50 + 56 (1 - B) \qquad v_{t max} = [A + (Q_v - 1)]^2 / 200$$

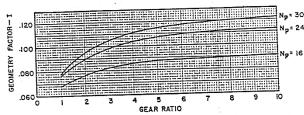
$$V_t = 6.28m/s \le V_t^{max} = \frac{[A + (Q_v - 3)]^2}{200} = 23.83 \, m/s$$



$$B = 0,7314$$

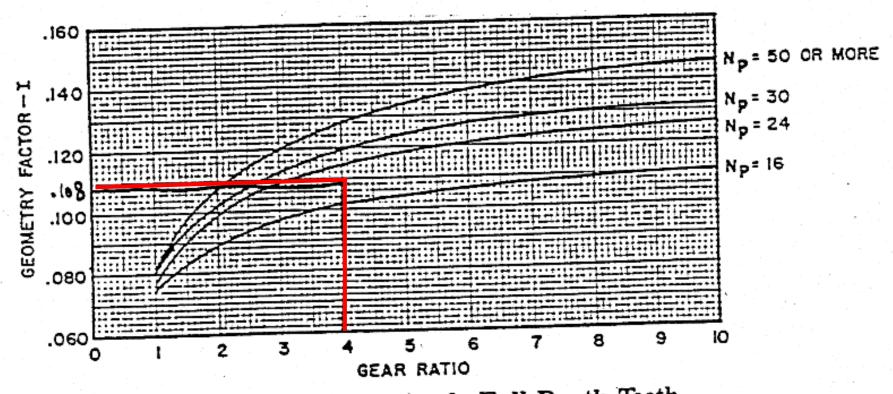

$$A = 65,04$$

$$B = 0.7314$$
 $A = 65.04$ $C_v = 0.7275$


Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth

(A) 14½ Degree Pressure Angle Full Depth Teeth —
(Standard Addendum = 1/P_d)

(B) 20 Degree Pressure Angle Full Depth Teeth—
(Standard Addendum = 1/P_d)



(C) 20 Degree Pressure Angle Stub Teeth—
(Standard Addendum = 0.8/P_d)

NOTE: All curves are for the lowest point of single tooth contact on the pinion.

Fig. A2 External Spur Pinion Geometry Factor, I

(for Standard Center Distances)

(B) 20 Degree Pressure Angle Full Depth Teeth —
(Standard Addendum = 1/Pd)

Puissance transmissible à la pression de contact

$$P_{ac} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{I \, C_v}{C_{SF}} \, \left[\frac{d \, S_{ac}}{C_p} \right]^2$$

Coefficient élastique

$$C_p = \left[\pi \left(\frac{1 - \nu_P^2}{E_P} + \frac{1 - \nu_R^2}{E_R}\right)\right]^{-1/2}$$

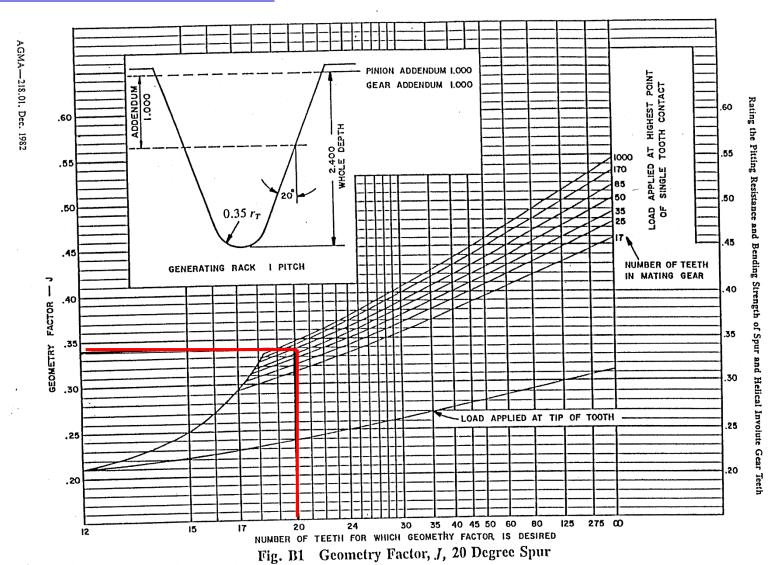
Pour l'acier $\nu_P = \nu_R = 0, 3$ $E_P = E_R = 217500 \, MPa.$ $C_p = 195$

Puissance transmissible à la pression de contact

$$P_{ac} = \frac{N_p b}{1,91 \, 10^7} \, \frac{I \, C_v}{C_{SF}} \, \left[\frac{d \, S_{ac}}{C_p} \right]^2$$

 En considérant les valeurs de toutes les grandeurs, nous pouvons écrire pour la pression superficielle :

$$110 < \frac{500 \cdot 268 \cdot 0, 108 \cdot 0, 7275}{1,91 \cdot 10^7 \cdot 2, 0} \left(\frac{240 \, S_{ac}}{195}\right)^2$$
$$110 < 0,000417495 \, S_{ac}^2$$


 On trouve que la contrainte maximale de pression du matériau doit être au moins égale à :

$$S_{ac} \geq 513, 3 MPa$$

Puissance transmissible à la flexion

$$P_{at} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{J \, K_v}{K_{SF}} \, d \, S_{at} \, m$$

- N_D vitesse de rotation: 500 tr/min
- Largeur de la roue: $b=b_2=268$ mm
- Rapport de réduction i=3,95
- Diamètre primitif d=d₀₁=240 mm
- Facteur de service: suivant Richter Ohlendorff C_{sf}=2,2
- Facteur dynamique: $K_v = 0.7275$ (identique à C_v)
- Facteur Géométrique à la flexion J=0,34 ($Z_1=20, Z_2=79$)

42

Puissance transmissible à la flexion

$$P_{at} = \frac{N_p \, b}{1,91 \, 10^7} \, \frac{J \, K_v}{K_{SF}} \, d \, S_{at} \, m$$

En considérant les valeurs de toutes les grandeurs, nous pouvons écrire pour la flexion:

$$110 < \frac{500 \cdot 268 \cdot 0, 34 \cdot 0, 7275}{1,9110^7 \cdot 2, 2} 240 S_{at} 12$$

 On trouve que la contrainte maximale de flexion du matériau doit être au moins égale à :

$$S_{at} \geq 48,42 \, MPa$$

Sélection du matériau:

Avec les valeurs des contraintes S_{ac} et S_{at} et à l'aide des tables 5 et 6, nous pouvons choisir l'acier A1.

Allowable Bending Stress Number, sat										
Material	AGMA Class	Commercial Decignation	Heat Treatment	Minimum Hardness Surface	Core	s . lb/ln²	(MPa)			
Steel	A-1	2	Through Hardened	480 BHN 240 BHN	=	25-33 000 31-41 000	(170-230			
	A-5		Tempered (Fig. 15)	360 BHN 400 BHN	_	40-52 000 42-56 000	(280-360			
	A-3		Flame or Induction Hardened* With Type A Pattern (Fig. 16)	50-54 HRC	_	45-55 000	(310-380			
			Flame or Induction Hardened With Type B Pattern (Fig. 16)		-	22 000	(150)			
	- ,	1	Carburized* & Case Hardened*	55 HRC 60 HRC	=	55-65 000 55-70 000	(380-450 (380-480			
		AISI 4140 AISI 4340 Nitralloy 135M		48 HRC 46 HRC 60 HRC	300 BHN 300 BHN 300 BHN	34-45 000 36-47 000 38-48 000 55-65 000	(230-310 (250-32) (260-330			
1 ,000	turning .	21/2% Chrome	Nitrided*†	54-60 HRC	350 BHN	5 000	(35)			
Cast	20		As Cast As Cast	175 BHN	_	8 500	(69)			
Iron	30 40		As Cast	200 BHN		13 000	(90)			
	A-7-a	60-40-18	Annealed	140 BHN		90-100% of	(1-1)			
Nodular (Ductile)	A-7-a A-7-c	80-55-06	Quenched			set for				
Iron			& Tempered	180 BHN	_	steel of same hardnes	20			
	A-7-d	100-70-03	: :	230 BHN	_	same narunes:				
	A-7-c	120-90-02		270 BHN 165 BHN		10 000	(70)			
Malleable	A-8-c	45007		180 BHN	_	13 000	(90)			
Iron	A-8-c	50005 53007	_	195 BHN	_	16 000	(110)			
(Pearlitic)	A-8-f A-8-i	80002	_	240 BHN	_	21 000	(145)			
	Bronze	AGMA	Sand Cast	Tensile		5 700	(40)			
	2	2C	Sand Cast	Strength						
Bronze	` `	***************************************		Minimum 40 000 lb/in ² (275 MPa)						
	Al/Br 3	ASTM B-148-52 Alloy 9C	Heat Treated	Tensile Strength Minimum 90 000 lb/in ² (620 MPa)	100	23 600	(160)			

^{*}The rungs of allowable stress numbers indicated, may be used with the case depths pescribed in paragraph 14.2

† The overload expective of shirteded gears in low, since the shape of the effective 5-N curve is flat. The sensitivity to shock should be investigated before proceeding with the details.

AGMA—218.01, Dec. 19

	AGMA	Commercial	Heat	Minimum Hardness at Surface	* 5	(MPa)	
Material	Class	Designation -	Treatment		s _{ae} , lb/in²		
Seci	A-1	7-1	Through Hardened	180 BHN & less	85-95 000	- (590+ 660)	
	A-5		Tempered (Fig. 14)	300 BHN 360 BHN 400 BHN	120-135 000 145-160 000 155-170 000	(830- 930) (1 000-1 100) (1 100-1 200)	
	4	,	Flame* or Induction Hardened*	50 HRC 54 HRC	170-190 000 . 175-195 000	(1 200-1 300) (1 200-1 300)	
		N V	Carburized* & Case Hardened*	55 HRC 60 HRC	180-200 000 200-225 000	(1 250-1 400) (1 400-1 550)	
		AISI 4140 AISI 4340 Nitralloy 135M 214% Chrome 214% Chrome	Nitrided* Nitrided* Nitrided* Nitrided*	48 HRC 46 HRC 60 HRC 54 HRC 60 HRC	155-180 000 150-175 000 170-195 000 155-172 000 192-216 000	(1 100-1 250) (1 050-1 200) (1 170-1 350) (1 100-1 200) (1 300-1 500)	
Cast ron	20 30 40		As Cast As Cast As Cast	175 BHN 200 BHN	50- 60 000 65- 75 000 75- 85 000	(340-410) (450-520) (520-590)	
Nodular Ductile)	A-7-a A-7-c A-7-d	60-14-18 80-55-06	Annealed Quenched & Tempered	140 BHN 180 BHN 230 BHN	90-100% of see value of steel with same	•	
Malleable	A-7-0 A-8-0	120-90-02		270 BHN 165 BHN	hardness 72 000	, (500)	
ron Pearlitic)	A-8-6 A-8-f A-8-1	50005 53007 80002	Ξ	180 BHN 195 BHN 240 BHN	78 000 83 000 94 000	(540) (570) (650)	
Bronze	Bronze 2	AGMA 2C	Sand Cast	Tensile Strength Minimum 40 000 lb/in ² (275 MPa)	30 000	(205)	
5	Al/Br 3	ASTM B-148-52 Alloy 9C	Heat Treated	Tensile Strength Minimum 90 000 lb/in ² (620 MPa)	65 000	(450)	

- Soit à transmettre 55 kW via un réducteur (i = 4) à engrenages à denture droite. L'arbre d'entrée tourne à 500 tr/min. Le pignon est arbré sur l'arbre.
- Recherchez les caractéristiques de l'engrènement $(Z_1, Z_2, d_{01}, d_{02}, m, b_1, b_2)$ et faites un choix de matériau pour le pignon.
- □ Entraînement par moteur électrique, démarrage moyen. Chocs raisonnables, 16 h/jour, durée de vie 50 000 heures.

□ La solution de l'exercice est livrée dans les notes de cours.

DETERMINATION GEOMETRIE APPROCHEE

DENTURES HELICOÏDALES

 La méthode développée pour la denture droite est valable jusqu'au calcul du module apparent

$$Z_1$$
 d_{01}
 $m_t = \frac{d_{01}}{Z_1}$ non normalisé

On choisit la largeur de la dent b'

$$b_1' > b_2'$$

La largeur du pignon est ensuite choisie en fonction des paramètres ψ_m et ψ_d , d'écriture modifiée.

$$\psi_m = \frac{b_1}{m_t} \qquad \psi_d = \frac{b_1}{d_{01}}$$

 $\Psi_{\rm m}$ ne peut dépasser 30 quand β_0 est supérieur à 25°

La norme DIN permet ensuite de déterminer l'inclinaison provisoire des dents β_0 en fixant temporairement ϵ_β =1.2 dans une première étape du calcul :

$$\epsilon_{\beta} = \frac{S_p}{p_t} = \frac{b_2 \tan \beta_0}{\pi m_t} = \frac{0.9 b_1 \tan \beta_0}{\pi m_t} = 1.2$$

Et partant de là

$$\beta_0 = \tan^{-1} \left(3.5 \, \frac{m_t}{b_1} \right)$$

- que l'on arrondit à un nombre entier de degrés.
- On en déduit la valeur du module normal théorique m* que l'on normalise à la valeur supérieure.

$$m_n^{\star} = m_t \cos \beta_0 \leq m_n^{\text{ISO}}$$

Toute la géométrie sera recalculée en adoptant ce module normalisé et la valeur arrondie de β_0 :

$$Z_{1}$$

$$m_{t} = \frac{m_{n}}{\cos \beta_{0}}$$

$$d_{01} = Z_{1} m_{t}$$

$$d_{02} = i d_{01}$$

$$Z_{2} = i Z_{1}$$

$$a_{0} = d_{01} \frac{1+i}{2}$$

$$b_{1} = 3.5 \frac{m_{t}}{\tan \beta_{0}} \text{ et } b'_{1} = \frac{b_{1}}{\cos \beta_{0}}$$

$$b'_{2} = \frac{b'_{1}}{1.1} \text{ et } b_{2} = \frac{b_{1}}{1.1}$$

- Le calcul de la vitesse périphérique v au cercle primitif va permettre d'ajuster le nombre de dents.
- L'angle d'hélice β_0 peut être modifié ultérieurement de manière à conduire à un entraxe fixé à l'avance:

$$a_0 = \frac{Z_1 m_n}{\cos \beta_0} \frac{1+i}{2}$$

- Un pignon à denture hélicoïdale calé en bout d'arbre, entraîne une roue dont les caractéristiques sont : m=4, $Z_2=91$, $b_2=45$ mm, $\alpha_0=20^\circ$, $\beta_0=20^\circ$, $N_2=750$ tr/min. La puissance reçue par la roue vaut 100 kW.
- Un moteur électrique entraîne le pignon (3000 tr/min) par l'intermédiaire d'un accouplement qui ne transmet que de la torsion.
- On demande de choisir les caractéristiques du pignon (Z_1, b_1, d_{01}) et de vérifier la fixation du pignon sur l'arbre.
- L'entraînement par le moteur électrique se fait selon un démarrage moyen, chocs raisonnables, 16h/jour, durée de vie 50 000h.

Caractéristique du pignon

$$i = \frac{3000}{750} = 4$$

Ce qui donne

$$Z_1 = \frac{Z_2}{i} = \frac{91}{4} = 22,75$$

On choisit

$$Z_1 = 23$$
 dents

Le rapport de réduction réel

$$i_{\text{r\'eel}} = \frac{91}{23} = 3,956$$

Soit une erreur de 1,1%

On calcule le module tangent

$$m_t = \frac{m_n}{\cos \beta_0} = \frac{4}{\cos 20^\circ} = 4,257$$

Soit le diamètre primitif du pignon:

$$d_{01} = m_t Z_1 = 4,25723 = 97,9 mm$$

Vitesse tangente au diamètre primitif

$$v = \frac{\pi d_{01} N}{60} = \frac{\pi 97,9 \cdot 10^{-3} \cdot 3000}{60} = 15,38 \, m/s$$

- □ Cette vitesse est inférieure à 20 et 25 m/s de sorte que pour un nombre de dents égal Z_1 =23 est acceptable,
- On peut calculer:

$$\epsilon_{\beta} = \frac{b_2 \tan \beta_0}{\pi \, m_t} \ge 1,22$$

Il vient

$$b_2 > 1, 2 \frac{\pi m_t}{\tan \beta_0} = 44,09 mm$$

On choisit

$$b_2 = 45 mm$$

On trouve

$$b_1 = 1, 1 b_2 = 49, 5 mm$$

On finit par calculer l'entraxe

$$a_0 = \frac{Z_1 m_n}{\cos \beta_0} \frac{1+i}{2} = \frac{23.4}{\cos 20^{\circ}} \frac{1+3,956}{2}$$
$$= 214,23 mm$$