

LTAS - Ingénierie des Véhicules Terrestres Université de Liège

INTRODUCTION A LA CONCEPTION MECANIQUE ET A L'USINAGE

Pierre DUYSINX

Université de Liège Année académique 2018-2019

Table des matières

1	TE	CHNIC	QUES D'AVANT PROJET	1		
	1.1	SOLLICITATION ÉLÉMENTAIRE				
		1.1.1	Calcul des efforts externes et internes	1		
		1.1.2	Sollicitations élémentaires	2		
	1.2	TENS	IONS ADMISSIBLES ET COEFFICIENT DE SECU-			
		RITE		3		
		1.2.1	Tension admissible	3		
		1.2.2	Coefficient de sécurité	4		
		1.2.3	Détermination des coefficients de sécurité	5		
		1.2.4	Choix du coefficient de sécurite K	5		
		1.2.5	Cas des autres modes de sollicitation	6		
	1.3	SOLL	ICITATION PAR CHOC OU PAR APPLICATION BRUS	QUE 8		
	1.4	SOLL	ICITATION VARIABLE DANS LE TEMPS	13		
	1.5	EFFO	RTS MAL DÉFINIS	17		
	1.6	SOLL	ICITATIONS COMPOSEES	18		
		1.6.1	Critère de la plus grande tension principale	19		
		1.6.2	Critères de plastification	19		
		1.6.3	Sollicitations composées en fatigue	23		
	1.7	SOLLICITATIONS D'ARBRES CYLINDRIQUES				
	1.8	COEF	FICIENT DE MAJORATION ψ EN FLEXION PURE	24		
2	EFI	FORTS	5 DANS LES TRANSMISSIONS	31		
	2.1	INTR	ODUCTION	31		
	2.2	PRIN	CIPE	31		
	2.3	LE RI	HÉOGRAMME DE LA PUISSANCE	32		
		2.3.1	Réducteur à engrenages	33		
		2.3.2	Distribution de puissance par une courroie	36		
		2.3.3	Une distribution plus complexe	38		
		2.3.4	Un cas de faible rendement	39		
	2.4	EFFO	RTS SECONDAIRES DANS LES ENGRENAGES	40		
		2.4.1	Engrenages à dentures droites	40		

		2.4.2	Engrenages à denture hélicoïdale	43
		2.4.3	Engrenages coniques à denture droite	45
		2.4.4	Efforts secondaires dans les transmissions par courroie	46
		2.4.5	Rapport de transmission	47
		2.4.6	Efforts secondaires dans les transmissions par chaîne $\ .$	55
3	$\mathbf{L}\mathbf{A}$	CONC	CEPTION A LA FATIGUE	59
	3.1	LE PH	HENOMENE DE FATIGUE	59
		3.1.1	Objet du chapitre	59
		3.1.2	Brève historique	60
		3.1.3	Les différentes phases d'une rupture par fatigue	62
		3.1.4	Sollicitations cycliques	64
		3.1.5	Limite d'endurance - Courbe de Wöhler	66
		3.1.6	Diagrammes de Haigh	75
		3.1.7	Diagramme de Goodman - Smith	78
		3.1.8	Diagramme VDI	79
		3.1.9	Diagramme de Soderberg	80
		3.1.10	Sécurité par rapport à la Soderberg Failure Line	81
		3.1.11	Fluctuation des charges	83
		3.1.12	Caractéristiques de quelques matériaux utilisés en constru	ıc-
			tion mécanique	84
	3.2	DIME	NSIONNEMENT POUR PLUS D'UN MILLION DE	
		CYCL	ES	93
		3.2.1	Introduction	93
		3.2.2	Effet d'échelle : coefficient $b_1 \ldots \ldots \ldots \ldots \ldots$	93
		3.2.3	Etat de surface : coefficient correcteur b_2	94
		3.2.4	Facteur de concentration de contrainte dans les pièces .	96
		3.2.5	Pièces soumises à des sollicitations pulsatoires	103
		3.2.6	Pièces lisses soumises à des sollicitations composées al-	
			ternées	110
		3.2.7	Pièces entaillées soumises à des sollicitations pulsa-	
			toires en phase $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	112
	3.3	DIME	NSIONNEMENT POUR UNE DUREE DE VIE LIMI-	
		TEE		114
	3.4	CAS D	DE PIECES REELLES SOUMISES A DIVERS NIVEAUX	-
		DE CO	ONTRAINTE	117
		3.4.1	Chargement de la pièce par un série de niveaux de sol-	
			licitations constants	117
	3.5	VALE	UR DU COEFFICIENT DE SECURITE	118
	3.6	AMEL	JORATION DE L'ENDURANCE	119
	3.7	TRAL	TEMENTS DE SURFACE	123

ii

		3.7.1	Traitements mécaniques - plastification locale à froid	. 124
		3.7.2	Traitements thermiques	. 128
Δ	EN	GREN	AGES	133
-	4.1	INTR	ODUCTION	133
	1.1	4.1.1	Définitions	133
		4.1.2	Elements historiques	. 133
		4.1.3	Applications des engrenages en mécanique	. 135
		4.1.4	Nomenclature	. 136
		4.1.5	Types d'engrenages	. 137
		4.1.6	Représentation graphique	. 137
	4.2	CINEN	MATIQUE DE L'ENGRENAGE A DENTURE DROIT	E138
		4.2.1	Définitions fondamentales	. 139
		4.2.2	Cinématique de l'engrènement	. 144
		4.2.3	Denture en développante de cercle	. 148
		4.2.4	Dimensions de la dent	. 150
		4.2.5	Angle de pression	. 152
		4.2.6	Forces normales et tangentielles entre dents	. 153
		4.2.7	Influence de la variation d'entraxe	. 154
		4.2.8	Influence de la variation de diamètre primitif. Notion	
			de crémaillère d'engrènement	. 156
		4.2.9	Interférence de denture	. 157
		4.2.10	Déport de denture	. 163
		4.2.11	Notion de recouvrement de dentures	. 173
	4.3	TANCE DES DENTURES		
		DROI	ΓES	. 178
		4.3.1	Résistance à la flexion	. 178
		4.3.2	Résistance à la pression de contact	. 186
	4.4	ENGR	ENAGES A DENTURE HELICOIDALE	. 191
		4.4.1	Paramètres fondamentaux des dentures	100
		4.4.0		. 193
		4.4.2	Forces sur la denture helicoidale	. 195
		4.4.3	Angle de pression apparent	. 197
		4.4.4	Dimensions generales des roues	. 198
		4.4.3	Nombre de dents et diametre primitir de la denture	100
		116	Déport de doptures bélicoïdeles	. 199 201
		4.4.0	Longuour de recouvrement d'une denture	. 201
		4.4.1	hélicoïdale. Paramètre de recouvrement	202
		448	Résistance des dentures hélicoïdales	202 202
		т.т.0		. 200

	4.5	4.5 CONCEPTION ET DIMENSIONNEMENT DES EN					
		NAGI	ES	. 204			
		4.5.1	Détermination de la géométrie approchée	. 204			
		4.5.2	Méthode simplifiée de dimensionnement selon l'ISO .	. 209			
		4.5.3	Exemples d'application de la méthode ISO simplifiée	. 213			
		4.5.4	Méthode de dimensionnement selon l'AGMA	. 224			
		4.5.5	Exercices Méthode AGMA	. 225			
5	TR.	ANSM	IISSIONS PAR COURROIE ET POULIES	237			
	5.1	GENE	ERALITES	. 237			
	5.2	FORM	MULES FONDAMENTALES	. 242			
		5.2.1	Définitions et relations de base	. 242			
		5.2.2	Rendement global et rapport de réduction réel	. 245			
	5.3	ETUI	DE DYNAMIQUE	. 247			
		5.3.1	Effort périphérique équivalent	. 247			
		5.3.2	Formule fondamentale d'Euler	. 248			
		5.3.3	Tensions centrifuge, tension productive	. 252			
		5.3.4	Valeurs des tensions dans les brins pour un effort ef-				
			fectif donné Q \ldots \ldots \ldots \ldots \ldots \ldots	. 254			
		5.3.5	Calcul des tensions dans la courroie pour le système de				
			poulies	. 255			
		5.3.6	Cas des courroies trapézoidales	. 256			
	5.4	GLISS	SEMENT - RENDEMENT DE GLISSEMENT	. 258			
		5.4.1	Glissement élastique	. 258			
		5.4.2	Glissement d'ensemble	. 260			
	5.5	TENS	SION DE POSE	. 261			
		5.5.1	Calcul de la tension de pose	. 262			
		5.5.2	Procédure de choix d'une tension de pose	. 265			
		5.5.3	Valeur minimale de la tension de pose	. 266			
		5.5.4	Contrôle de la tension de pose	. 268			
		5.5.5	Technologies d'imposition d'une tension de pose	. 269			
	5.6	ENTF	RAXE ET LONGUEUR DE COURROIE	. 273			
		5.6.1	Entraxe	. 273			
		5.6.2	Longueur L du lien flexible	. 275			
	5.7	DIME	ENSIONNEMENT - CHOIX DES COURROIES	. 278			
		5.7.1	Courroies plates	. 278			
		5.7.2	Courroies trapézoïdales	. 285			
		5.7.3	Courroies crantées	. 288			

A LEXIQUE

293

iv

Chapitre 1

TECHNIQUES D'AVANT PROJET

1.1 SOLLICITATION ÉLÉMENTAIRE

1.1.1 Calcul des efforts externes et internes

Le dimensionnement est prinicpalement basé sur le calcul de résitance et de déformation des organes formant un systèmes mécanique. Pour cela, on détermine d'abord les efforts sollicitant chacun des organes lors du fonctionnement du système. Dans nombre de cas, on essaie de se ramener à un ensemble de cas de *sollicitations quasi statiques équivalentes*.

Pour tenir compte des liaisons cinématiques, on peut décomposer le mécanisme en remplaçant chaque liaison par des efforts inconnus. L'équilibre du corps en translation et rotation est ensuite exprimé par les six équations de Newton-Euler

$$\sum \vec{F} = m \frac{d\vec{v}}{dt} \tag{1.1}$$

$$\sum \vec{M} = \frac{d}{dt} \left(J \vec{\omega} \right) \tag{1.2}$$

Une fois les sollicitations externes connues, on détermine les efforts internes afin de calculer les containtes et déformations de la matière. Utilisons le *principe de la coupe*. On trouve alors les forces et moments appliqués à cette section du solide.

FIGURE 1.1 – Calcul des efforts et sollicitations des organes mécaniques au sein du système

1.1.2 Sollicitations élémentaires

Les forces agissant à gauche de la section droite G de la poutre représentée à la Figure 1.2 peuvent se ramener à :

- Une force R d'orientation quelconque dans l'espace passant par le centre de gravité G de la section droite;
- Un moment M.

R et M occupant une position quelconque par rapport au plan de la section.

La force R peut se decomposer elle-même en une force normale N au plan de la section et une force T contenue dans le plan de la section. Quant au moment M, il se décompose lui-même en un moment M_t normal au plan de la section et un moment M_f contenu dans le plan de la section. Selon la

FIGURE 1.2 – Eléments de réduction

position dans l'espace de la résultante R des forces à gauche, chacune des quatre actions citées pourrait être la seule à s'exercer. Dans cette hypothèse on dénombre quatre *solicitations simples ou élémentaires* :

- L'effort normal N, qui déternine une sollicitation de traction ou de compression,
- L'effort tranchant T, qui détermine une sollicitation de cisaillement simple,
- Le moment de flexion pure M_f (plane ou gauche) entraînant un système de tensions de traction et de compression;
- Le moment de torsion M_t , qui détermine une sollicitation de torsion pure, donnant naisance à un système de sollicitations de cisaillement.

1.2 TENSIONS ADMISSIBLES ET COEF-FICIENT DE SECURITE

1.2.1 Tension admissible

On appelle *tension admissible* la tension (ou contrainte) que le matériau peut accepter sans s'endommager ou se rompre.

Pour les matériaux ductiles tels que l'acier au carbone, l'acier allié, l'acier coulé, l'aluminium et ses alliages, les métaux légers et leurs alliages, le laiton, etc. il est évident qu'il faut éviter de mettre la pièce en état de déformation permanente. La tension admissible doit donc être telle que la limite d'élasticité apparente R_e ou $\sigma_{0,2}$ ne soit pas dépassée. Si on convient de désigner par R la tension admissible, on admet souvent que l'on puisse écrire

$$R \leq R_e \quad \text{ou} \quad \sigma_{0,2} = R^* \tag{1.3}$$

où R^{\star} est la tension de référence du matériau.

En ce qui concerne les fontes grises lamellaires et les matériaux raides, ils ne présentent généralement pratiquement pas de déformation permanente. C'est donc par rapport à la tension de rupture R_0 faut définir la sécurité pour fixer la tension admissible.

$$R^{\star} = R_0 \tag{1.4}$$

1.2.2 Coefficient de sécurité

En fait il faut assurer l'inégalité à un degré en fixant en grandeur la sécurité que l'on veut garantir. Afin de tenir compte de toute une série de facteurs non maîtrisés, des erreurs de modiélisation, de la méconaissance des solliciations exactes, on va limiter les tensions dans la matière à une certaine fraction de la valeur admissible. On peut écrire :

$$R = \frac{R^{\star}}{K} \tag{1.5}$$

K étant un coefficient supérieur à l'unité K>1, appelé coefficient de sécurité.

Exemple

Parfois les modélisations du système ou des caractéristiques du matériau, font que l'on se place naturellement du côté de la sécurité. Par example pour les aciers doux à mi durs, il est courant d'adopter en bonne pratique une limite élastique calculée à partir de la limite de rupture selon la formule suivante

$$R_e = \frac{R_0}{2} + 50 \text{ à } 100 \text{ MPa}$$
 (1.6)

En conséquence l'ancienne pratique qui consistait à situer la limite d'élasticité du matériau à la moitié de la limite de rupture revient à adopter une tension de référence R^* plus faible que R_e :

$$R^{\star} = \frac{R_0}{2} = \frac{R_e}{K^{\star}} < R \tag{1.7}$$

Il en découle que l'ancienne pratique adoptait implicitement un coefficient de sécurité K^\star :

$$K^{\star} = \frac{2 R_e}{R_0} = \frac{2 R_0}{R_0 2} + (50 \text{ à } 100) \frac{2}{R_0}$$
 (1.8)

$$K^{\star} \simeq 1 + \frac{2 \cdot 75}{R_0} = 1 + \frac{150}{R_0}$$
 (1.9)

 K^{\star} variait donc en fonction de la nuance d'acier :

Acier extra-doux
$$R_0 = 350 \ MPa$$
 $K^* = 1.42$ Acier doux $R_0 = 420 \ MPa$ $K^* = 1.35$ Acier demi-doux $R_0 = 550 \ MPa$ $K^* = 1.27$ Acier demi-dur $R_0 = 600 \ MPa$ $K^* = 1.25$

1.2.3 Détermination des coefficients de sécurité

Ce qui a été dit du choix de la tension admissible était fondé sur la connaissance de la tension de rupture R_0 et de la limite d'élasticité R_e fournies par les essais de traction. Cette limite n'est donc applicable en toute rigueur au stade de nos connaissances actuelles, qu'aux sollicitations de nême type ayant les mêmes caractéristiques, c'est-à-dire au cas de la traction simple exercée par l'application d'un effort :

- progressivement appliqué;
- constant en direction;
- parfaitement déterminé, c'est-à-dire ne donnant pas lieu à un effort et à une tension secondaire.

Il y a lieu d'établir ce que devient cette notion :

- d'abord en restant dans le cas de la traction simple, compte tenu d'autres façon d'appliquer la sollicitation;
- dans les cas d'autres sollicitations simples;
- dans le cas de sollicitations composées, c'est-à-dire résultant de l'application simultanée de deux ou plusieurs sollicitations simples.

1.2.4 Choix du coefficient de sécurite K

Examinons mainteant le calcul de la tension admissible référentielle R à défaut de coefficient fixé par une norme.

Dans le cas de matériaux ductiles, le coefficient de sécurité est appliqué à la limite élastique R_e ou à son équivalent $\sigma_{0,2}$. Etant donné les hypothèses défavorables (choc mou, pas d'amortissement, etc.) introduites lors de l'étude des solficitations brusques, avec ou sans choc, on peut judiciieusement choisir une valeur de K inférieure à 2. On adoptera ainsi

$$R = \frac{R_e \text{ ou } \sigma_{0,2}}{K} = \frac{R^*}{K}$$

avec K = 1.3 à 1.8.

La valeur minimale de K est introduite lorsque les efforts sont bien connus, pour des pièces mécaniques peu importantes et facilement remplaçables. Les valeurs plus élevées de K seront utilisées dans le cas contraire.

Dans le cas des matériaux fragiles ne présentant aucune propriété de ductilité, le coefficient de sécurité est appliqué à la limite de rupture R_0 . On adopte une valeur K plus élevée que dans le cas précédent :

$$R = \frac{R_0}{K}$$

avec K = 1.5 à 2.5.

Les mêmes remarques que précédemment s'imposent quant au choix des valeurs, faibles ou élevées, du coefficient de sécurité.

1.2.5 Cas des autres modes de sollicitation

Les valeurs limites des tensions admissibles qui correspondent à d'autres types de sollicitation que la traction simple sont fixées toutes par rapport à la tension référentielle R.

Matériaux ductiles : aciers, aciers coulés, fontes malléables et nodulaires, alliages de cuivre, alliages d'aluminium, etc. On prend :

En compression	R' = R
	(R' = 1.2 R pour alliages d'Alu.)
En cisaillement simple perpendiculaire	$R''_{\perp} = 0.8 R = 4/5 R$
aux fibres du laminage ou du forgeage	
En cisaillement pur	R'' = 0.65 a 0.70 R
En cisaillement simple parallèle	$R_{\parallel}'' = 0.6 R = 3/5 R$
aux fibres du laminage ou du forgeage	"
Pression de contact	$R^* = R_e$ ou $\sigma_{0,2}$
	,

Matériaux fragiles :

	Compression	Cisaillement
Fontes blanches	R' = 1.5 R	R'' = 1.2 R
Fontes noires	R' = 2.0 R	R'' = 1.2 R
Fontes grises lamellaires	R' = 2.5 R	R'' = 1.2 R
Pression de contact	$p \simeq R'$	

avec néanmoins des tensions admissibles R assez basses dans l'absolu.

Effets cumulés

La tension référentielle R (traction) intervient donc lors de l'évaluation des tensions limites correspondant à n'importe quel type de sollicitation. Il est clair cependant qu'un coefficient supérieur à K doit être introduit dans le cas de chocs caractérisés ou de sollicitations variables dans le temps.

Illustrons la méthode par un exemple. On considère une pièce d'acier moyennement importante, supportant des sollicitations moyennement déterminées. On introduit un facteur de sécurité 1.5 :

$$R = \frac{R^*}{1.5} = \frac{2}{3}R^*$$

Dans le cas d'un cisaillement répété parallèle aux fibres, on écrit :

$$R''_{\parallel} = \frac{3}{5}R = \frac{2}{3}\frac{3}{5}R = \frac{2}{5}R$$

Si l'effet de choc est important, le coefficient K doit être remplacé par un coefficient K' supérieur, calculé en fonction de l'énergie cinétique à absorber par cycle (coefficient de choc). On écrit en définitive

$$(R''_{\parallel})^{\text{choc}} = \frac{2}{5}R^*_{\text{choc}} = \frac{2}{5}\frac{1}{K_{\text{choc}}}R^*$$

Prenons classiquement $K_{\rm choc} = 2$ et un acier au chrome (acier 15 Cr 3) $R^* = 450 \ N/mm^2$:

$$(R''_{\parallel})^{\text{choc}} = \frac{2}{5} \frac{450}{2} = 90 \ N/mm^2$$

1.3 SOLLICITATION PAR CHOC OU PAR APPLICATION BRUSQUE

En construction de machines, le cas d'une mise en charge progressive doit être considéré comme exceptionnel. Généralement, on admet que l'effort agit instantanément avec toute son intensité dans toute la pièce. Ceci implique bien entendu le passage à deux niveaux. En ce qui concerne l'instantanéité d'application de l'effort, on peut se convaincre du bien fondé de l'hypothèse en songeant au cas de la bielle de moteur automobile tournant à la vitesse de 3000 tours par minute, où l'effet de l'explosion se produit en un arc de 12°, et l'effort passe de zéro à son maximum en 1/1500 de seconde. Quant à l'hypothèse de l'instantanéité de la transmission de l'effort à toute la pièce, elle est aussi plausible que la première si l'on songe à la grande rapidité de la transmission des ondes de pression dans dans les pièces métalliques et à leur faible longueur. La vitesse de propagation des ondes de pression est celle du son qui est de l'ordre de 5000 m/s pour l'acier.

Il est donc intéressant d'étudier la sollicitation longitudinale par choc ou par application brusque de l'effort de traction dans une barre prismatique.

Soit une éprouvette de section Ω et de longueur ℓ (voir Figure 1.3) étant initialement sous l'action permanente d'un effort G_0 (par exemple le poids propre de la barre elle-même)ayant provoqué un allongement x_0 .

FIGURE 1.3 – Exemple d'application dynamique de la charge

Supposons que la masse M de poids G = Mg situé à une hauteur h de

l'extrémité de l'éprouvette. L'éprouvette est équipée d'un dispositif de butée. Lachons la masse M en chute libre et étudions la vibration du système élastique qui prend naissance après l'impact.

Appelons x_{MAX} l'élongation maximale mesurée à l'extémité de l'éprouvette. Soit x_{st} l'allongement réel de la barre tel qu'il apparaîtait si l'effort G = Mg était appliqué statiquement, c'est-à-dire suivant les conditions l'essai de traction normalisé.

Formulons encore quelques hypothèses simplificatrices.

- La sollicitation se transmet instantannément à toute la barre;
- Le choc est "mou", c'est-à-dire qu'il n'y a pas de rebondissement de la masse M. L'énergie cinétique de la masse M est intégralement transformée en énergie potentielle de déformation;
- L'amortissement interne de la matière est négligeable.

Dans ces conditions, désignons par M_T est la masse totale en vibration, soit la somme de la masse de la masse d'épreuve M et celle de la barre $M_2 = \phi m$. Appelons k la raideur du système fonction du module de Young E du matériau, de la section droite Ω et de la longueur de l'éprouvette ℓ . On peut écrire :

$$M_T = M \left(1 + \phi \right) \tag{1.10}$$

$$k = \frac{E\Omega}{\ell} \tag{1.11}$$

L'équation différentielle du mouvement est classique. En utilisant les grandeurs définies précédemment, il vient successivement :

$$M_T \ddot{x} + k x = M g \tag{1.12}$$

$$\ddot{x} + \frac{k}{M_T} x = \frac{M g}{M (1+\phi)} = \frac{g}{1+\phi}$$
(1.13)

$$\ddot{x} + \omega^2 x = \frac{g}{1+\phi} = F$$
(1.14)

où ω^2 est la pulsation propre du système élastique.

La solution de cette équation différentielle du second ordre est familière;

$$x = C_1 \sin \omega t + C_2 \cos \omega t + C_3 \tag{1.15}$$

Exprimons les conditions aux limites :

$$x = x_0 \quad \text{en} \quad t = 0 \tag{1.16}$$

d'où

$$C_2 + C_3 = x_0 \tag{1.17}$$

Soit V la vitesse de la masse M au moment de l'impact :

$$\dot{x} = V \quad \text{en} \quad t = 0 \tag{1.18}$$

Etant donné que

$$\dot{x} = C_1 \omega \cos \omega t - C_2 \omega \sin \omega t$$

d'où

$$V = C_1 \omega \qquad \Rightarrow \qquad C_1 = \frac{V}{\omega}$$
 (1.19)

Pour calculer les valeurs des constantes revenons à l'équation différentielle. Pour cela on doit d'abord calculer l'accélération de la soution x(t):

$$\ddot{x} = -C_1 \,\omega^2 \,\sin\omega t \,-\, C_2 \,\omega^2 \,\cos\omega t$$

et en l'insérant dans l'équation différentielle. Il vient :

$$-C_1 \omega^2 \sin \omega t - C_2 \omega^2 \cos \omega t + \omega^2 C_1 \sin \omega t + \omega^2 C_2 \cos \omega t + \omega^2 C_3 = F$$
$$\omega^2 C_3 = F$$
$$C_3 = \frac{g}{1+\phi} \frac{M(1+\phi)}{k} = \frac{Mg}{k} = x_{st}$$

d'où

$$C_3 = x_{st} \tag{1.20}$$

et de là :

$$C_2 = x_0 - x_{st} (1.21)$$

La solution recherchée s'écrit :

$$x(t) = \frac{V}{\omega} \sin \omega t + (x_0 - x_{st}) (\cos \omega t) + x_{st}$$
(1.22)

$$x(t) - x_0 = \frac{V}{\omega} \sin \omega t + (x_{st} - x_0) (1 - \cos \omega t)$$
(1.23)

Calculons l'élongation maximale x_{MAX} du système. Pour ce la réécrivons d'abord l'élongation de la manière suivante. On pose :

. .

$$A \cos \psi = \frac{V}{\omega}$$
$$A \sin \psi = x_0 - x_{st}$$

 soit

$$\tan \psi = \frac{x_0 - x_{st}}{V/\omega}$$
$$A = \sqrt{(x_0 - x_{st})^2 + (V/\omega)^2}$$

L'élongation (1.22) s'écrit :

$$x(t) = x_{st} + A \sin \omega t \cos \psi + A \cos \omega t \sin \psi$$

= $A \sin(\omega t + \psi) + x_{st}$ (1.24)

 soit

$$x(t) = \sqrt{(x_0 - x_{st})^2 + (V/\omega)^2} \sin(\omega t + \psi) + x_{st}$$
(1.25)

L'élongation maximale survient lorsque la dérivée première de l'élongation s'annule

$$\dot{x}(t^*) = A\cos(\omega t^* + \psi) \omega = 0$$

et on en tire la variable ωt^* correspondante.

$$\omega t^* + \psi \; = \; \frac{\pi}{2} \; + \; k \; \pi$$

et la valeur correspondante de l'élongation est aisément déduite :

$$x_{MAX} = x(t^*) = x_{st} + A \sin(\pi/2) = x_{st} + A$$

 soit

$$x_{MAX} = x_{st} + \sqrt{(x_0 - x_{st})^2 + (V/\omega)^2}$$
(1.26)

$$= x_{st} \left[1 + \sqrt{\left(1 - \frac{x_0}{x_{st}}\right)^2 + \frac{V^2}{x_{st}^2 \,\omega^2}} \right]$$
(1.27)

On peut également écrire en revenant aux définitions des paramètres du système :

$$\begin{aligned} x_{MAX} &= x_{st} \left[1 + \sqrt{(1 - \frac{x_0}{x_{st}})^2 + \frac{V^2}{x_{st}^2 \, \omega^2}} \right] \\ &= x_{st} \left[1 + \sqrt{(1 - \frac{x_0}{x_{st}})^2 + \frac{V^2 \, k^2 \, M \, (1 + \phi)}{G^2 \, k}} \right] \\ &= x_{st} \left[1 + \sqrt{(1 - \frac{x_0}{x_{st}})^2 + \frac{V^2 \, k \, (1 + \phi)}{G \, g}} \right] \\ &= x_{st} \left[1 + \sqrt{(1 - \frac{x_0}{x_{st}})^2 + \frac{V^2 \, E\Omega}{G \, \ell} \, (1 + \phi)} \right] \end{aligned}$$

Si on n troduit la tension statique développée par la force G dans barre de section \varOmega : G

$$\sigma_{st} = \frac{G}{\Omega}$$
$$x_{MAX} = x_{st} \left[1 + \sqrt{(1 - \frac{x_0}{x_{st}})^2 + \frac{V^2}{g} \frac{E}{\sigma_{st}\ell} (1 + \phi)} \right]$$

Dans le cas d'une chute libre, la conservation de l'énergie permet d'écrire la vitesse V en fonction de la hauteur h:

$$V = \sqrt{2 g \left(h + x_0\right)}$$

ce qui donne la forme finale du déplacement maximale

$$x_{MAX} = x_{st} \left[1 + \sqrt{(1 - \frac{x_0}{x_{st}})^2 + 2\frac{h + x_0}{\ell}\frac{E}{\sigma_{st}}(1 + \phi)} \right]$$
(1.28)

Conclusions

Si $x_0 = x_{st}$ et si h = 0, c'est-à-dire si la déformation initiale est la déformation statique qui correspond au poids G. Même s'il s'agit d'une situation difficile à expérimenter en pratique, on est dans le cas d'une application quasi statique de la charge. En utilisant la formule (1.28) on n'observe aucune modification de la déformation. La situation correspond aux conditions idéales quasi statiques et on n'observe aucune facteur d'amplification de contrainte.

$$x_{MAX} = x_{st}$$

$$\sigma_{MAX} = E \frac{x_{MAX}}{\ell} = E \frac{x_{st}}{\ell} = \sigma_{st}$$

Si $x_0 = 0$ et si h = 0, nous sommes dans la situation d'une charge appliquée brusquement. Il vient

$$x_{MAX} = 2 x_{st}$$

 et

$$\sigma_{MAX} = E \frac{x_{MX}}{\ell} = E \frac{2 x_{st}}{\ell} = 2 \sigma_{st}$$

Ainsi la tension développée dans une pièce mécanique par application brusque de la charge est double de ce qu'il aurait été dans le cas quasi statique.

Si $x_0 = 0$ et si h et V sont différents de zéro, on obtient

$$x_{MAX} = x_{st} \left[1 + \sqrt{\left(1 + 2\frac{h}{\ell}\frac{E}{\sigma_{st}}\left(1 + \phi\right)}\right] = x_{st} \left[1 + \sqrt{\left(1 + 2\frac{V^2}{g\,\ell}\frac{E}{\sigma_{st}}\left(1 + \phi\right)}\right] \right]$$

et dans ces conditions, la déformation maximale est bien supérieure à la déformation statique x_{st} . Le facteur d'amplification peut être largement supérieur à 2. Prenons un exemple numérique :

$$\sigma_{st} = 10 \text{ MPa}$$
 $h = 100 \text{ mm}$ $\phi = 0.2$
 $x_0 = 0 \quad \ell = 1000 \text{ mm}$ $E = 210 \text{ GPa}$

On calcule alors

$$x_{MAX} = x_{st} \left[1 + \sqrt{\left(1 + 2\frac{100}{1000}\frac{210\ 10^9}{10\ 10^6}\ (1.2)}\right] = 72\ x_{st}$$

$$\sigma_{MAX} = 720\ \text{MPa}$$

Ce qui souligne l'importance du facteur de choc.

A noter toutefois que les calculs précédents s'appliquent tels quels qu'à une pièce de section constante. Des variations de section importantes concentrent la toute grande partie de l'énergie de déformation dans les parties à section réduite et mènent à un maximum de tension bien plus élevé encore que celui qui a été calculé. La capacité de résistance au choc de telles pièces est ainsi fortement réduite.

Nous insisterons pour terminer sur le fait que ce phénomène important a été traité dans le contexte relativement simple de sollicitations de traction, mais que l'analyse aurait pu être étendue aux cas de la flexion ou de la torsion. Les développements auraient certes subi des aménagements imposés par les configurations particulières des systèmes considérés mais les conclusions finales resteraient inchangées.

1.4 SOLLICITATION VARIABLE DANS LE TEMPS

La plupart des pièces intervenant dans la construction mécanique et, plus particulièrement, dans les moteurs sont soumises au cours de leur vie à des efforts variables qui se reproduisent un très grand nombre de fois. II a été établi expérimentalement que les tensions menant à la rupture surviennent pour des niveaux de contraintes maxima bien plus faibles que celles observées dans des essais de traction quasi statique. Ces efforts sont d'autant plus faible que le nombre de cycles d'application de l'effort variable est grand. On observe que la fréquence de ces cycles ne joue presque pas pour autant qu'elle soit assez élevée, ce qui correspond avec les vitesses de rotation pratiquées dans les machines. Aux fréquences considérées, la rupture se produit sans signe avant courreur. c'est-à-dire sans striction ni allongement plastique apparent.

On constate généralement pour l'acier que la tension de rupture après application d'un million de cycles ne diminue pratiquement plus, de telle sorte que, pour une tension réduite de 10% par rapport à la limite, le nombre d'applications de l'effort avant rupture devient illimité.

Par ailleurs on observe expérimentalement que la valeur de la tension de rupture dépend de l'évolution de la tension au cours du cycle.

Le phénomène s'appelle *fatigue* et sera analyé en détails dans un chapitre ulterieur. Les essais destinés à faire connaître les tensions de rupture par fatigue sont appelés essais d'endurance. On les effectue généralement par flexion rotative sur des éprouvettes cylindriques dans des machines de fatigue.

A l'origine des études entreprises, il faut citer les travaux de Wöhler qui a évalué expérimentalement l'abaissement de la tension de rupture R_0 en fonction du rapport $\sigma_{min}/\sigma_{max}$ de la tension minimale à la tension maximale atteintes sur le cycle. On notera que ce cycle correspond à l'application permanente d'une tension moyenne $\sigma_m = \bar{\sigma}$:

$$\bar{\sigma} = \frac{\sigma_{min} + \sigma_{max}}{2}$$

à laquelle on superpose une tension alternée σ_a d'amplitude

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$$

comme montré à la Figure (1.4).

La courbe représentée à la Figure 1.5 décrit l'évolution de la tension de rupture pour un nombre d'applications du cycle (pouvant être considérée comme illimité) pour différents rapports $\phi = \frac{\sigma_{min}}{\sigma_{max}}$ et de R_0 , limite de rupture. Seefehlner fournit une expression approchée de cette courbe

$$R_{0\phi} = \frac{2}{3} R_0 \left(1 + \frac{\phi}{2}\right)$$
(1.29)

FIGURE 1.4 – Définition des caractéristiques σ et σ_a d'une sollicitation variable dans le temps

FIGURE 1.5 – Evolution de la limite de rupture pour un million de cycles pour différents rapports $\phi = \sigma_{min}/\sigma_{max}$

sous la forme suivante où $R_{0\phi}$ désigne la tension de rupture par fatigue ou d'endurance.

Dans le cas d'efforts statiques, $\sigma_{min} = \sigma_{MAX} = \bar{\sigma}, \, \sigma_a = 0$:

$$\phi = 1 \qquad R_{\phi} = R_0$$

Dans le cas d'efforts alternés, $\sigma_{min} = -\sigma_a$, $\sigma_{MAX} = \sigma_a$, $\bar{\sigma} = 0$:

$$\phi = -1 \qquad R_{\phi} = \frac{1}{3} R_0 = R_{01}$$

Dans le cas d'efforts répétés, $\sigma_{min} = 0$, $\sigma_{MAX} = 2\sigma_a$, $\bar{\sigma} = \sigma_a$:

$$\phi = 0 \qquad R_{\phi} = \frac{2}{3} R_0 = R_{02}$$

Cette vue du phénomène de fatigue est certes un peu simpliste mais elle est souvent suffisante en techniques d'avant-projet. Elle conduit à la conception de pièces généralement surdimensionnées mais elle ne tient pas compte des accidents de géométrie tels que des congés de raccords, les gorges, saignées, rainures de cales, etc. qui amplifient la sensibilité de la pièce au phénomene de fatigue. La méthode de Seefehlner ne doit préconisée qu'au moment du prédimensionnement des pièces de machine, car elle est simple et directe. Elle est bien adaptée en conception préliminaire, car elle n'exige aucun calcul itératif du type forme-tension.

La conception utilisant la méthode de Seefehlner doit être affinée ultérieurement lors de la phase finale du projet où la méthode de Soderberg qui sera décrite plus loin est strictement la seule qui doit être mise en oeuvre en phase de vérification, pour tenir compte de la géométrie finale réelle de la pièce élaborée.

Il découle de l'approche qu'un dimensionnement de pièce de machine, pratiqué par la méthode de Seefehlner doit faire intervenir une tension admissible inférieure à celle qui serait introduite dans un calcul quasi statique. En conséquence, d'après Seefehlner, il est convenu d'appliquer un facteur de réduction de R_0 et d'écrire :

$$R_{\phi} = \frac{2}{3} R_0 \left(1 + \frac{\phi}{2} \right) = \frac{R}{K_{\phi}}$$
(1.30)

où K_{ϕ} est un coefficient de sécurité additionnel qui découle de l'application de sollicitations variables. Sa valeur est fournie au Tableau 1.1 en fonction du rapport $\phi = \sigma_{min}/\sigma_{MAX}$:

$\phi = \sigma_{min} / \sigma_{MAX}$	-1	-0.5	-0.25	0	+0.25	+0.5	+1
K_{ϕ}	3	2	1.71	1.5	1.33	1.2	1.0

TABLE 1.1 – Coefficient de sécurité K_{ϕ} fonction du rapport $\phi = \sigma_{min}/\sigma_{max}$

1.5 EFFORTS MAL DÉFINIS

Dans de nombreux cas, les conditions de sollicitation des pièces sont mal connues, la distribution des actions extérieures est difficile à déterminer ou trop complexe à établir, le calcul des tensions résultant des actions extérieures est incertain en raison des carences venant de l'état des connaissances théoriques en mécanique du solide la répartition des déformations de la pièce en raison de ses formes et de ses liaisons, ou encore parce qu'un calcul suffisamment exact de ces tensions demanderait l'utilisation de moyens de calcul disproportionné au stade de la conception préliminaire.

En l'occurrence, le problème se pose comme suit : établir les dimensions d'une pièce sans connaître exactement les tensions qui s'y établissent. On suit alors un processus appelé *méthode de calcul par comparaison*. Cette méthode consiste en ceci : on fait le choix d'une pièce analogue à celle qui doit être calculée, pièce qui a été éprouvée par une utilisation pratique ayant donné entièrement satisfaction. Pour cette pièce que nous appellerons le modèle, on situe sommairement les sollicitations extérieures connues. On la schématise en vue de l'application d'une méthode de calcul des tensions relativement simple, et dans le cadre de cette modélisation, on chiffre la tension maximale atteinte en service.

Utilisant alors cette tension comme tension admissible (coefficient de résistance), on applique à la pièce à calculer, le mêne système de détermination des sollicitations extérieures, ce qui conduit à la détermination des dimensions cherchées.

La méthode de calcul par comparaison n'a de valeur que si le modèle et la pièce sont pratiquement de géométriques semblables, et que si le rapport de similitude ou de quasi similitude est peu éloigné de l'unité. Toute extension à des formes ou à des dimensions nettement différentes du modète est périlleuse.

On ne doit pas se complaire dans l'utilisation de cette méthode par simple souci de facilité. Les cas d'application deviennent et doivent devenir de moins en moins nombreux au fur et à mesure que les connaissances dans les domaines de la résistance des matériaux, des théories de l'élasticité et de la plasticité évoluent et s'accroissent et que les temps de calcul des méthodes numériques comme la méthode des éléments finis diminuent.

Il est clair à ce propos que l'utilisation de méthodes d'investigation fines, basées sur les techniques numériques telles que la méthode des éléments finis, sont tout à fait capables de résoudre des problèmes de ce type problème pour autant qu'il soit possible de rendre compte correctement les conditions aux limites correspondantes. Dès que ces méthodes sont appliquées à des géométries tridimensionnelles complexes, on se rappellera qu'elles exigent des temps de calcul de calcul dont les coûts peuvent être fort élevés.

1.6 SOLLICITATIONS COMPOSEES

Nous ne ferons qu'une brève incursion dans cette matière en vue de situer sommairement le problème dans le domaine de la construction des pièces de machines.

Les cas essentiellement rencontrés sont ceux où agissent simultanément des tensions normales et des tensions tangentielles (par exemple traction simple et cisaillement simple, flexion et torsion).

Comment interpréter leur intervention combinée sur base des connaissances acquises par l'essai de traction?

On y arrive en adoptant un critère de résistance qui indique suivant quelle règle il faut combiner les tensions dues aux sollicitations simples pour former une tension équivalente, appelée **tension de comparaison**, entendue comme tension de traction équivalente et à exploiter comme telle pour prédire la rupture ou la plastification du matériaux à l'aide des valeurs de références définies précédemment.

Deux types de critères sont utilisés dans ce but : soit celui de la plus grande tension principale soit ceux basés sur l'apparition des premiers glissements plastiques.

Soit un état plan de tension caractérisé par σ , τ (Figure 1.6a). Traçons le cercle de Mohr correspondant. Il en découle (Figure 1.6b) trois tensions principales σ_I , σ_{II} , σ_{III} ;

$$\sigma_I, \ \sigma_{II} = 0, \ \sigma_{III} < 0$$

Les valeurs de ces tensions principales σ_I et σ_{III} sont respectivement :

$$\sigma_I = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$
$$\sigma_{III} = \frac{\sigma}{2} - \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

FIGURE 1.6 – a/ Etat plan de contrainte b/ Cercle de Mohr

1.6.1 Critère de la plus grande tension principale

Ce critère est appliqué dans le cas des matériaux fragiles. Il revient à limiter la plus grande tension principale σ_I à la tension admissible en traction, à savoir

$$\sigma_I = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} < R$$

soit

$$\sigma \left(1 + \sqrt{1 + \left(\frac{2\tau}{\sigma}\right)^2}\right) < 2R$$

1.6.2 Critères de plastification

Pour les métaux ductiles, dont les aciers doux, on emploie des critères de plastification : généralement le critère de Tresca-Guest et le critère de Hencky-Von Mises.

Critère de Hencky-Von Mises

Le **critère de Tresca-Guest** appelé aussi *critère du cisaillement maximum* considère que les premières déformations permanentes sensibles se produisent par glissement relatif des couches l'une sur 1'autre, et s'appuie ainsi sur la tension de cisaillement maximum, égale à la demi-différence des tensions principales extrêmes.

$$\frac{\sigma_I - \sigma_{III}}{2} = \tau_{MAX}$$

Il convient de comparer cette contrainte de cisaillement maximum - avec la sécurité requise - à la plus grande tension de cisaillement relevée dans l'essal de traction, également à l'apparition des premières déformations permanentes sensibles.

Or dans l'essai de traction simple, la construction du cercle de Mohr montre que la tension de cisaillement maximale vaut toujours la moitié de la tension de traction existant dans l'éprouvette soit R/2.

Comparer $(\sigma_I - \sigma_{III})/2$ à une tension R/2 revient à comparer $\sigma_I - \sigma_{III}$ à R, c'est-à-dire que dans le critère de Tresca-Guest, la tension de comparaison sera 1a différence des tensions principales extrêmes, à considérer et à traiter comme tension de traction simple. Il vient ainsi :

$$\sigma_c = \sigma_I - \sigma_{III} = 2\sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} < R$$

 soit

$$\sigma_c = \sqrt{\sigma^2 + 4\tau^2} < R \tag{1.31}$$

Critère de Hencky-Von Mises

Un second critère basé sur la notion de déformation limite est également très utilisé en construction de machines : c'est le critère de **Hencky - Von Mises** ou critère de la plus grande tension tangentielle octaédrale.

Désignons par U l'énergie volumique totale qu'un solide soumis à un champ de contraintes σ_{ij} :

$$U = \frac{1}{2} \sum_{i,j} \sigma_{ij} \epsilon_{ij}$$

En utilisant les contraintes principales et les déformations associées, on peut encore écrire :

$$U = \frac{1}{2} \sum_{i=I,II,III} \sigma_i \epsilon_i$$

Supposons le corps élastiques isotropes, les relations tensions - déformations s'écrivent en fonction des coefficients de Lamé (module de compressibilité cubique et module de cisaillement) ou plus souvent, pour les ingénieurs, en fonction du module de Young E et du coefficient de Poisson ν :

$$\epsilon_i \;=\; \frac{\sigma_i}{E} \;-\; \frac{\nu}{E} \;\sum_{j \neq i} \;\sigma_j$$

On obtient l'expression de l'énergie interne exprimée en termes des contraintes principales.

$$U^* = \frac{1}{2E} \left[\sum_{i=I,II,III} \sigma_i^2 - 2\nu \left(\sum_{i=I,II,III} \sigma_i \sigma_{i+1} \right) \right]$$

Nous avons utilisé la notation U^* puisqu'il s'agit d'une expression de l'énergie complémentaire puisque écrite en fonction des contraintes uniquement.

Cette énergie totale de déformation n'est toutefois pas un élément déterminant pour la prédétermination des caractéristiques ultimes : il est prouvé expérimentalement que l'application d'un champ de pression hydrostatique σ_h

$$\sigma_h = \sigma_I = \sigma_{II} = \sigma_{III}$$

La contrainte hydrostatique σ_h n'induit pas de plastification du matériau.

Retirons l'énergie liée à la composante hydrostatique U_h^* hors de l'expression de l'énergie volumique.

$$U_h^* = \frac{3(1-2\nu)}{2E}\sigma_h^2$$

Remplaçons la composante du champ de pression hydrostatique par sa valeur en fonction des contraintes principales :

$$\sigma_h = \frac{\sigma_I + \sigma_{II} + \sigma_{III}}{3}$$

Il vient

$$U_{h}^{*} = \frac{(1-2\nu)}{6E} \left[\sum_{i=I,II,III} \sigma_{i}^{2} + 2 \left(\sum_{i=I,II,III} \sigma_{i} \sigma_{i+1} \right) \right]$$

L'énergie de distorsion caratéristique d'un état de tension tridimensionnel est déterminé en retirant l'énergie hydrostatique :

$$U_d = U^* - U_h^* = \frac{(1+\nu)}{3E} \left[\sum_{i=I,II,III} \sigma_i^2 - \left(\sum_{i=I,II,III} \sigma_i \sigma_{i+1} \right) \right]$$

La méthode qui utilise le critère de Hencky et Von Mises consiste à comparer l'énergie de distorsion volumique existant en un point d'un élément de machine à la valeur maximale admissible tolérée pour l'essai de traction simple :

$$\sigma_I = R = \frac{R_e}{K} \quad \sigma_{II} = \sigma_{III} = 0$$

il en découle la tension de comparaison σ_c , tension fictive à utiliser pour prédire la plastification du matériau :

$$\sigma_c^2 = \sum_{i=I,II,III} \sigma_i^2 - \sum_{i=I,II,III} \sigma_i \sigma_{i+1} \leq R^2$$

Considérons un étant de tension bidimensionnel caractérisé par un traction σ et un cisaillement τ . Les contraintes principales sont :

$$\sigma_{I} = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^{2} + \tau^{2}}$$

$$\sigma_{II} = 0$$

$$\sigma_{III} = \frac{\sigma}{2} - \sqrt{\left(\frac{\sigma}{2}\right)^{2} + \tau^{2}}$$

Il vient

$$\sigma_c^2 = \left[\left(\frac{\sigma}{2}\right)^2 + \left(\frac{\sigma}{2}\right)^2 + \tau^2 + 2\left(\frac{\sigma}{2}\right)^2 \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} \right] \\ + \left[\left(\frac{\sigma}{2}\right)^2 + \left(\frac{\sigma}{2}\right)^2 + \tau^2 - 2\left(\frac{\sigma}{2}\right)^2 \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} \right] \\ - \left[\left(\frac{\sigma}{2}\right)^2 - \left(\frac{\sigma}{2}\right)^2 - \tau^2 \right]$$

Soit

$$\sigma_c = \sqrt{\sigma^2 + 3\tau^2} \le R \tag{1.32}$$

Tension admissible en torsion : Il faut noter que le choix d'un critère de plasticité fixe le niveau maximum des tensions tangentielles par rapport à celles résultant de la torsion. En effet, si $\sigma = 0$ et $\tau \neq 0$, il vient :

— Critère de Tresca-Guest :

$$\sigma_c = \sqrt{4\tau^2} \le R$$

 soit

$$\tau \leq \frac{R}{2}$$

— Critère de Hencky et Von Mises :

$$\sigma_c = \sqrt{3\tau^2} \le R$$

 soit

$$\tau \leq \frac{R}{\sqrt{3}} = 0.577 R$$

1.6.3 Sollicitations composées en fatigue

En technique d'avant-projet, la DIN accepte de composer les tensions variables suivant le critère suivant :

$$\sigma_c = \sqrt{\sigma^2 + 3 (\alpha \tau)^2} \le R_{limite}$$
(1.33)

- Si σ est alternée et τ est constante ou répétée, on adopte $\alpha = 0.7$ et $\sigma_{limite} = R_1$
- Si σ et τ sont de même type, on adopte
 - $\alpha = 1$ dans le cas d'un moment de flexion combiné avec un effort tranchant. La tension de cisaillement τ est calculée par la fomule :

$$\tau = \frac{T}{A'}$$

 $\alpha = 1.15$ dans le cas d'un moment de flexion et d'un moment de torsion simultanés et si σ et τ sont maximales au même endroit. On prend pour valeur de R_{limite} , R_1 , R_2 ou R_{ϕ} suivant les cas.

1.7 SOLLICITATIONS D'ARBRES CYLIN-DRIQUES

Les barres cylindriques revêtent une importance considérable en mécanique car c'est la forme des arbres de machine destinés à la transmission de puissance.

Dans le cas des barres cylindriques destinées à la fonction d'arbre de transmission, la tension σ est une tension liée à l'application d'un moment de flexion M_f , tandis que la tension τ est une tension de cisaillement pur liée à un moment de torsion M_t . Soit d le diamètre de l'arbre cylindrique. Il vient :

$$\sigma = \frac{M_f}{\frac{\pi d^4}{64}} \frac{d}{2} = \frac{M_f}{\frac{\pi d^3}{32}}$$

 et

$$\tau = \frac{M_t}{\frac{\pi d^4}{32}} \frac{d}{2} = \frac{M_t}{\frac{\pi d^3}{16}} = 0.5 \frac{M_f}{\frac{\pi d^3}{32}}$$

Dans le cas du critère de Tresca-Guest, il vient

$$\sigma_c = \sqrt{\frac{M_f^2}{(\frac{\pi d^3}{32})^2} + 4 \frac{0.25 M_t^2}{(\frac{\pi d^3}{32})^2}} = \frac{32}{\pi d^3} \sqrt{M_f^2 + M_t^2}$$

et si on appelle

$$\sigma_c \, \frac{\pi d^3}{32} \; = \; M_i$$

le moment fictif idéal, le critère de Tresca Guest s'écrit :

$$M_i^{(T)} = \sqrt{M_f^2 + M_t^2}$$

Cas du critère de Hencky-Von Mises, on a :

$$\sigma_c = \sqrt{\frac{M_f^2}{(\frac{\pi d^3}{32})^2} + 3\frac{0.25\,M_t^2}{(\frac{\pi d^3}{32})^2}} = \frac{32}{\pi d^3}\sqrt{M_f^2 + 0.75\,M_t^2}$$

et partant de là, le moment fictif idéal, le critère de Von Mises s'écrit :

$$M_i^{(VM)} = \sqrt{M_f^2 + 0.75 M_t^2}$$

A noter que l'existence d'une tension de traction (ou de compression) supplémentaire ou tout simplement l'absence de forme circulaire impose automatiquement l'utilisation du critère sous sa forme initiale

$$\sigma_c = \sqrt{(\sigma_f + \sigma_t)^2 + 3 (\alpha \tau)^2} \le R_{limite}$$
(1.34)

A noter que dans les développements qui vont suivre, nous adopterons en général $\alpha = 1$, ce qui conduit à appliquer de préférence le critère de Hencky et Von Mises.

1.8 COEFFICIENT DE MAJORATION ψ EN FLEXION PURE

On établit aisément la valeur des tensions de traction et de compression résultant de la sollicitation par **flexion pure** d'une section d'une poutre en admettant l'hypothèse - confirmée par l'observation - du maintien de la planéité de la section droite après déformation. Cette notion peut également résulter simplement de la considération de conditions de symétrie.

Considérons la situation d'une flexion plane telle que le moment fléchissant agit dans un des plans de symétrie, et où il existe un second plan de symétrie normal au premier. On fait l'hypothèse que le pivotement du plan de la section droite s'effectue autour du second axe de symétrie de la section droite, appelé axe neutre.

La situation est représentée à la Figure 1.7. Considérons un tronçon de poutre élémentaire de longueur dl et soumis à un moment de flexion M. Le segment CD, pivotant d'une angle $d\phi$ autour de l'axe neutre OO' conduit à une extension des fibres situées au dessus de OO' tandis que les fibres situées sous l'axe neutre OO' se trouvent en compression. Si le matériau est élastique linéaire, l'application du moment de flexion conduit à une distribution bi triangulaire des déformation et des contraintes.

FIGURE 1.7 – Ca d'une flexion pure

Si on adopte $\sigma_{MAX} = R_e$, on peut écrire l'expression du moment élémentaire qui correspond à une ordonnée particulière z comptée à partir de l'axe neutre OO'.

$$\sigma(z) = \sigma_{MAX} \frac{z}{h} = R_e \frac{z}{v}$$

où v est la distance à l'axe neutre de la fibre la plus éloignée sur la section droite (voir Figure 1.7).

$$v = \max(h_s, h_i)$$

L'intégrale de ces moments élémentaires doit être égale au moment de flexion extérieur.

$$M_e = \int_{-h_i}^{h_s} R_e \frac{z}{v} z \, b(z) \, dz = \frac{R_e}{v} \int_{-h_i}^{h_s} b(z) \, z^2 \, dz$$

Il vient donc

$$\frac{M_e}{R_e} = \frac{I}{v} \tag{1.35}$$

avec le moment d'inertie I de la section par rapport à l'axe neutre

$$I = \int_{-h_i}^{h_s} b(z) \, z^2 \, dz \tag{1.36}$$

Les cas particuliers suivants sont très courants dans la pratique :

— Section rectangulaire de largeur b et de hauteur h:

$$I = \frac{bh^3}{12} \qquad v = \frac{h}{2} \qquad \frac{I}{v} = \frac{bh^2}{6}$$

— Section circulaire de diamètre d :

$$I = \frac{\pi d^4}{64}$$
 $v = \frac{d}{2}$ $\frac{I}{v} = \frac{\pi d^3}{32}$

Une particularité de la résistance à la flexion des aciers doux comparée à leur résistance à la traction tient à l'existence du palier d'étirage qui, s'il est abordé, rend les situations des deux cas assez dissemblables. En effet, dans un barreau en extension, dès qu'une sollicitation permet d'atteindre exactement la limite d'étirage. Le moindre accroissement de l'effort appliqué pour un palier d'étirage strictement horizontal dans le diagramme de traction, l'absorbe tout entier.

FIGURE 1.8 – Palier d'étirage dans la courbe de traction des aciers

Pour la poutre fléchie la même situation initiale ne concerne que les fibres extrêmes. Tout accroissement de la sollicitation déterminera pour ces fibres

26

une certaine absorption du palier d'étirage sans augmentation de la valeur de leur contrainte, mais la solidarité de ces fibres avec les fibres voisines de la section entraîne d'abord un accroissement élastique de leur déformation, et par la suite, de leur tension élastique. Ceci donnera lieu ensuite à une déformation plastique de ces fibres avec maintien de leur tension au niveau de la limite d'élasticité apparente d'où un accroissement du moment résistant créé par les tensions présented dans la section fléchie, qui pourra dès lors réprendre un léger accroissement du moment de flexion par une déformation plastique très modérée.

En raison du fait que, dans le palier d'étirage, la section continue à conserver sa planéité (ce qui a été démontré expérimentalement) on dispose du moyen de traiter théoriquement et de modéliser le problème.

Reprenons le cas traité dans la Figure 1.7, mais augmentons le moment de flexion de telle sorte qu'aux fibres extrêmes, l'allongement total devienne supérieur à l'allongement élastique limite ou en d'autres termes, qu'une déformation permanente apparaisse au niveau des fibres extrêmes (Figure 1.9). Supposons une section rectangulaire et que l'on autorise un accroissement du moment de flexion repris moyennant plastification limitée $M_f = \psi M_e$ avec un coefficient ψ de l'ordre de 1.2. Calculons la déformation permanente qui apparaît dans la fibre extrême lorsque le couple est relaxé.

Dès que le moment M_f est retiré, une répartition bitriangulaire doit être soustraite du diagramme des tensions de la Figure 1.9, de manière à annuler dans un premier temps la tension qui existe à la fibre extrême (Voir Figure 1.10).

FIGURE 1.9 – Le coefficient ψ

Calcul du coefficient α

Supposons la section symétrique. Pour faciliter le raisonnement supposons également que la section est rectangulaire. Posons $\mathcal{H} = h/2$ la moitié de la hauteur de la section droite. On admet au départ

$$M_f = 1.2 M_e = 1.2 \frac{I}{v} R_e = 1.2 \frac{bh^2}{6} R_e$$
$$M_f = 1.2 \frac{4}{6} b\mathcal{H}^2 R_e = 0.8 b\mathcal{H}^2 R_e$$

Calculons M_f par intégration des moments développés par la distribution des contraintes selon la hauteur de la section droite.

$$\frac{1}{2} M_f = \left[\left(\frac{1}{2} R_e \, \alpha \mathcal{H} \right) \frac{2}{3} \, \alpha \mathcal{H} + (1 - \alpha) \mathcal{H} \, R_e \, \frac{1 + \alpha}{2} \mathcal{H} \right] b$$
$$M_f = R_e \, \frac{b \mathcal{H}}{3} \left(3 - \alpha^2 \right)$$

d'où la valeur de α :

$$0.8 = \frac{3 - \alpha^2}{3}$$
 soit $\alpha = \sqrt{0.6} = 0.775$

FIGURE 1.10 – Contraintes résiduelles

Calcul de ϵ_p déformation plastique permanente

L'allongement conservant la planéité, l'allongement totale de la fibre extérieure sous l'effet de M_f vaut :

$$\epsilon_t = \epsilon_e \frac{\mathcal{H}}{\alpha \mathcal{H}} = 1.29 \epsilon_e$$

Dès que le moment M_f est retiré, une répartition bitriangulaire doit être soustraite des tensions de la Figure 1.9, de manière à annuler dans un premier temps la tension qui existe dans la fibre extrême (Figure 1.10).

Une répartition de tensions résiduelles persiste néanmoins. La valeur maximale de cette tension résiduelle σ_r est localisée en $\alpha \mathcal{H}$ et peut se calculer de la manière suivante :

$$\sigma_r = R_e - \frac{R_e}{\mathcal{H}} \, \alpha \mathcal{H} = 0.225 \, R_e$$

Il en découle un moment de flexion équivalent que l'on peut évaluer :

$$M_{f} = 2 \left[\frac{1}{2} \left(\sigma_{r} \ \alpha \mathcal{H} \ b \right) \frac{2}{3} \ \alpha \mathcal{H} + \frac{1}{2} \left(\sigma_{r} \ (1-\alpha) \mathcal{H} \ b \right) \left(\alpha \mathcal{H} + \frac{1}{3} (1-\alpha) \mathcal{H} \right] \\ = 2 \ \sigma_{r} \mathcal{H}^{2} b \left[\frac{\alpha^{2}}{3} + \frac{1-\alpha}{2} \left(\frac{3\alpha}{3} + \frac{1}{3} - \frac{\alpha}{3} \right) \right] \\ = 2 \left(0.225 \ R_{e} \right) \frac{\mathcal{H}^{2} b}{6} \ 1.775 = 0.8 \ R_{e} \ \frac{\mathcal{H}^{2} b}{6}$$

Ce moment fictif va induire une répartition de tensions classiques qui tendent à équilibrer la répartition de tensions résiduelles. Appliquons l'équation d'équarissage.

$$M'_f = \sigma_c \, \frac{bh^2}{6} = \frac{2}{3} \, \sigma_c \, b\mathcal{H}^2$$

Les moments M_f et M'_f sont identiques de sorte que l'on peut écrire :

$$\frac{2}{3} \, \sigma_c \, b \, \mathcal{H}^2 \, = \, 0.8 \, R_e \, \frac{\mathcal{H}^2 b}{6}$$

soit

 $\sigma_c = 0.2 R_e$

 et

$$\epsilon_c = 0.2 \epsilon_e$$

d'où la valeur finale de la déformation permanente après suppression du moment de flexion initial.

$$\epsilon_p = \epsilon_t - \epsilon_e - \epsilon_c = 0.09 \epsilon_e$$

Seules des valeurs faibles de ϵ_p sont tolérées en pratiques : la limite de $0.075 \epsilon_e$ est assez souvent citées. On adopte généralement les coefficients ψ repris au Tableau 1.2.

Remarques

On peut montrer que les *sections circulaires* soumises à la torsion sont caractérisées par le même coefficient de majoration : une valeur unique (1.3 ou 1.1) peut donc être utilisée indifféremment en flexion et en torsion.

Section Carré plein		Circulaire	Rectangulaire	Tube creux	
ψ 1,425		1,3	1,2	1,1	

TABLE 1.2 – Coefficients de majoration ψ en flexion

En définitive, l'application d'un couple M_f supérieur à celui qui entraîne l'apparition de R_e à la fibre extrême de la pièce ($M_f = \psi M_e \psi > 1$) conduit à la création d'une zone plastifiée d'autant plus épaisse que le coefficient multiplicatif ψ est élevé.

Si on limite la déformation permanente maximum à $0.075\epsilon_e$ environ, on fixe automatlquement une tension de flexion fictive R_e^* supérieure à la limite acceptable en simple traction

$$R_e^* = \psi R_e$$

cette procédure apparemment paradoxale se justifie par le fait que l'allongement plastique des fibres ne concerne qu'une couche mince de la peau de pièce alors qu'en traction la limite Re est atteinte uniformément dans la section transversale.

C'est donc la notion de sécurité prise par rapport à l'existence de déformations plastiques importantes qui permet d'adopter une tension admissible R_{flex} majorée par rapport à la tension référentielle R_e adoptée en traction simple.

En ce qui concerne la flexion des fontes grises lamellaires (fontes de moulage), on peut adopter les mêmes coefficients de majoration. Ceci ne résulte plus, comme pour les aciers, de l'effet bénéfique d'une meilleure distribution des tensions dans la section due à sa plastification mais bien de l'existence dans la courbe de l'essai de traction, d'une concavité tournée vers l'axe des abscisses (axe des déformations) et partant d'une répartition de σ_f plus uniforme du côté de la fibre extrême.
Chapitre 2

EFFORTS DANS LES TRANSMISSIONS

2.1 INTRODUCTION

Le premier problème qui se pose en dimensionnement est le recensement des efforts. Les efforts peuvent être une donnée du problème, fondée sur une analyse statistique par exemple. Dans un certain nombre de cas, ils font l'objet de règlements.

Nous nous pencherons plus particulièrement sur le recensement des efforts dans une transmission. Ceci nous permettra d'envisager un certain nombre d'éléments courants en mécanique.

2.2 PRINCIPE

La première démarche consiste à déterminer le schéma de la circulation de la puissance. On en déduit aisément les *efforts actifs*, c'est-à-dire ceux qui travaillent et transmettent la puissance. Mais la plupart des transmissions ne peuvent exister que moyennant des *efforts secondaires*, induisant de la flexion et parfois aussi de l'extension. Contrairement à ce que leur dénomination pourrait faire croire, ces efforts ne sont pas nécessairement plus petits que les efforts actifs. Ils jouent souvent un rôle fondamental dans la résistance de l'arbre et de ses supports et les éléments de guidage. La détermination des efforts secondaires fait l'objet d'une deuxième étape de calcul où l'on tient à la fois compte des efforts actifs et du type de transmission envisagée.

2.3 LE RHÉOGRAMME DE LA PUISSANCE

La puissance fournie par le ou les *organes moteurs* est amenée aux *organes* récepteurs par la *transmission*, moyenant d'ailleurs certaines *pertes*. On a donc en général la relation

$$\sum \mathcal{P}_{mot} = \sum \mathcal{P}_{rec} + \sum \mathcal{P}_{pertes}$$
(2.1)

Dans un très grand nombre de transmissions mécaniques, les pertes sont faibles devant la puissance à transmettre, c'est-à-dire que le rendement

$$\eta = \frac{\sum \mathcal{P}_{rec}}{\sum \mathcal{P}_{mot}}$$
(2.2)

est voisin de l'unité. C'est pourquoi, en dehors de cas très particuliers, il est d'usage, au moins dans un calcul préliminaire, de négliger les pertes (ce qui équivaut à poser $\eta = 1$). Dans ces conditions, la puissance passe des moteurs aux récepteurs sans perte à la manière d'un fluide incompressible. Le *rhéogramme de la puissance* est précisément le schéma de ces flux. En pratique on peut remonter de chaque récepteur vers son générateur de puissance pour établir le chemin pris par la puissance. L'ensemble des chemins de tous les récepteurs forme dans ce cas un circuit maillé.

A partir du rhéogramme, il est aisé de déterminer les efforts moteurs, car la puissance \mathcal{P} est toujours de la forme

$$\mathcal{P} = Q v \tag{2.3}$$

ou v est une vitesse généralisée et Q, l'effort actif associé. En pratique, on rencontre des vitesses de translation pour lesquelles la formule (2.3) s'applique sans modification, et des vitesses de rotation, pour lesquelles la formule (2.3) doit s'entendre comme

$$\mathcal{P} = \mathcal{C}\,\omega = M_t\,\omega = M_t\,2\,\pi\,N \tag{2.4}$$

avec un couple C donnant lieu à un moment de torsion M_t multipliant une vitesse angulaire ω (en radians par secondes) et N la vitesse de rotation correspondante exprimée en tours par seconde (encore appelé la fréquence de rotation). Nous allons illustrer cette approche au moyen de quelques exemples.

FIGURE 2.1 – Réducteur à engrenages à deux étages

2.3.1 Réducteur à engrenages

Un réducteur est destiné à transformer une puissance à grande vitesse de rotation ω_m en une puissance à faible vitesse de rotation ω_r . Le réducteur à engrenages de la Figure 2.1 possède deux étages. Le rendement des engrenages est élevé (98 %), ce qui permet de négliger les pertes. On a donc immédiatement

$$M_{tm} = \frac{\mathcal{P}}{\omega_m}$$
 et $M_{tr} = \frac{\mathcal{P}}{\omega_r}$ (2.5)

ce qui signifie que le couple récepteur est beaucoup plus important que le couple moteur. Remarquons que cela signifie que ces deux couples ne sont pas équilibrés et que, dès lors, si l'on fait l'équilibre du réducteur complet, on constate qu'il faut que la différence

$$\Delta M_t = M_{tr} - M_{tm}$$

soit reprise par ailleurs. Ici la différence de couple entre l'entrée et la sortie est reprise par les réactions des liaisons entre le réducteur et la fondation. Il est donc essentiel d'attacher le réducteur !

En suivant la situation représentée à la Figure 2.1, la puissance passe de l'entrée au point A par l'arbre moteur. Elle passe alors par les roues dentées sur l'arbre intermédiaire, ou elle fait le chemin DE. De là, elle passe par la seconde paire d'engrenages à l'arbre récepteur, ou elle fait le chemin de H vers la sortie. On en déduit les moments de torsion dans les différentes tronçons d'arbres. Par exemple il est clair que le moment de torsion est nul dans les portions d'arbre AB, CD, EF, GH puisque le couple y est nul.

Portion d'arbre	Puissance	Moment de torsion
Entrée - A	\mathcal{P}	\mathcal{P}/ω_m
A - B	0	0
C - D	0	0
D - E	\mathcal{P}	\mathcal{P}/ω_t
E - F	0	0
G - H	0	0
H - Sortie	\mathcal{P}	\mathcal{P}/ω_r

On peut tout aussi déduire sans peine les efforts actifs dans les engrenages. Grace à la présence des dents, deux circonférences (une sur chaque roue) roulent sans glisser l'une sur l'autre. C'est ce que l'on appelle les *circonférences primitives*. Si d_{01} et d_{02} sont leurs diamètres, les roues dentées ont donc en leur point de contact I une vitesse tangentielle commune v donnée par

$$v = \omega_m \frac{d_{01}}{2} = \omega_m \frac{d_{02}}{2} \tag{2.6}$$

Pour l'arbre secondaire on évidemment

$$\frac{\omega_m}{\omega_i} = \frac{d_{02}}{d_{01}} \quad \text{et} \quad \frac{\omega_i}{\omega_r} = \frac{d_{03}}{d_{02}} \tag{2.7}$$

Pratiquement, pour que deux roues puissent engrener, il faut qu'elles aient le même pas p. Ce pas est donné par

$$p = \frac{\pi d}{Z} \tag{2.8}$$

où Z est le nombre de dents. Le périmètre πd est un nombre irrationnel à cause du nombre π . Le pas est une grandeur difficile à manipuler. Le diamètre est lui normalement un nombre rationnel, de même évidemment que le nombre entier de dents. Du reste, sur les plans, on ne voit pas la circonférence, mais le diamètre. C'est pourquoi on ne parle jamais du pas, mais du *module*.

$$m = \frac{p}{\pi} = \frac{d}{Z} \tag{2.9}$$

qui est un nombre rationnel, et ce sont les modules qui sont normalisés. Il est clair que deux roues qui engrènent ont le même module. Il en découle également que :

$$\frac{\omega_m}{\omega_i} = \frac{d_{02}}{d_{01}} = \frac{m Z_2}{m Z_2} = \frac{Z_2}{Z_1}$$
(2.10)

FIGURE 2.2 – Effort actif dans la première paire d'engrenages

c'est-à-dire que les vitesses angulaires sont inversement proportionnelles aux nombres de dents.

Il vient que la roue motrice fournit une puissance

$$\mathcal{P} = Q v \tag{2.11}$$

Qétant la composant tangentielle de l'effort d'interaction entre les deux roues dentées, ce qui donne

$$F_t = Q = \frac{\mathcal{P}}{v} \tag{2.12}$$

C'est l'effort actif. Nous verrons plus loin quels sont les efforts secondaires qui l'accompagnent.

2.3.2 Distribution de puissance par une courroie

FIGURE 2.3 – Entraı̂nement des auxiliaires d'un moteur à piston par une courroie

Considérons la distribution de puissance aux auxiliaires d'un moteur à combustion interne, soit la pompe à eau et le ventilateur d'une part, l'alternateur d'autre part (Voir Figure 2.2). En pratique, on utilise une courroie

2.3. LE RHÉOGRAMME DE LA PUISSANCE

trapézoïdale ou une courroie crantée. Supposons que l'alternateur doive tourner 1.8 fois plus vite que le moteur et la pompe à eau, 1.5 fois plus vite que le moteur, on a :

$$\omega_p = 1.5 \,\omega_m \quad \text{et} \quad \omega_a = 1.8 \,\omega_m \tag{2.13}$$

La caractéristique d'une courroie est de transmettre (au rendement près) sa vitesse tangentielle aux poulies. On a donc

$$v = \frac{\omega_m d_m}{2} = \frac{\omega_p d_p}{2} = \frac{\omega_a d_a}{2} \tag{2.14}$$

Il en découle que les diamètres doivent être dans le rapport inverse des vitesses angulaires :

$$d_p = \frac{d_m}{1.5}$$
 et $d_a = \frac{d_m}{1.8}$ (2.15)

Le bilan des puissances s'écrit

$$\mathcal{P}_m = \mathcal{P}_a + \mathcal{P}_p \tag{2.16}$$

Si, par exemple, l'alternateur consomme 230 W et le groupe pompe-ventilateur, 500 W, on aura donc

$$\mathcal{P}_m = 730 W$$

Telle est la puissance consommée par le moteur pour faire tourner ses auxiliaires.

Venons-en aux efforts actifs. On appelle effort actif d'une courroie sur une poulie le rapport

$$\mathcal{P} = Q v \tag{2.17}$$

C'est la charge équivalente concentrée à la jante de la poulie qui fournirait la même puissance. On peut encore la voir comme la somme de tous les efforts tangentiels à la jante fournis par la courroie à la poulie. Si donc la vitesse de la courroie vaut 30 m/s, on aura

$$Q_m = \frac{\mathcal{P}_m}{v} = \frac{730}{30} = 24.33 N$$
$$Q_p = \frac{\mathcal{P}_p}{v} = \frac{500}{30} = 16.67 N$$
$$Q_a = \frac{\mathcal{P}_a}{v} = \frac{230}{30} = 7.67 N$$

Dans tout ceci, nous assimilons le rendement à l'unité. En pratique, il se situe aux environs de 96 à 98 %.

FIGURE 2.4 – Système complexe de distribution de puissance

2.3.3 Une distribution plus complexe

Dans le cas de la transmission de la Figure , le moteur m fournit sa puissance à trois récepteurs notés 1, 2 et 3. On obtient aisément le rhéogramme de la Figure en partant des récepteurs. Supposons que l'on désire connaître les moments de torsion régnant dans les différents tronçons de l'arbre secondaire. Il suffit de diviser la puissance qui y transite par la vitesse angulaire.

FIGURE 2.5 – Rhéogramme de puissance d'un système complexe de distribution

Les moments de torsion dans l'arbre intermédiaire sont donnés par :

Portion d'arbre	Puissance	Moment de torsion
A - B	0	0
B - C	$\mathcal{P}_1+\mathcal{P}_2+\mathcal{P}_3$	$rac{\mathcal{P}_1 + \mathcal{P}_2 + \mathcal{P}_3}{\omega_i}$
C - D	$\mathcal{P}_2+\mathcal{P}_3$	$\frac{\mathcal{P}_2 + \mathcal{P}_3}{\omega_i}$
D - E	\mathcal{P}_3	$\frac{\overline{\mathcal{P}}_3}{\omega_i}$
E - F	0	0

2.3. LE RHÉOGRAMME DE LA PUISSANCE

Les moments de torsion dans l'arbre primaire est donné par :

$$M_{tm} = \frac{\mathcal{P}_1 + \mathcal{P}_2 + \mathcal{P}_3}{\omega_m}$$

tandis que les moments de torsion dans les arbres récepteurs sont

$$M_{t1} = \frac{\mathcal{P}_1}{\omega_1} \quad M_{t2} = \frac{\mathcal{P}_2}{\omega_2} \quad M_{t3} = \frac{\mathcal{P}_3}{\omega_3}$$

Enfin, les efforts actifs dans les engrenages valent

$$Q_1 = \frac{\mathcal{P}_1}{\omega_1 \frac{d_{01}}{2}} \quad Q_2 = \frac{\mathcal{P}_2}{\omega_2 \frac{d_{02}}{2}} \quad Q_3 = \frac{\mathcal{P}_3}{\omega_3 \frac{d_{03}}{2}}$$

2.3.4 Un cas de faible rendement

FIGURE 2.6 – Transmission par vis et écrou

Il existe certains cas où il est indispensable de tenir compte des pertes parce qu'elles sont importantes. C'est notamment le cas des transmissions par vis et écrou. Dans ces transmissions, très communes dans les machines-outils notamment pour le mouvement d'avance.

En fonction du pas et du coefficient de frottement, le fonctionnement peut être réversible ou irréversible. Si le mouvement est *irréversibles*, la vis peut faire avancer le chariot mais inversément, le chariot est incapable de faire tourner la vis en se déplaçant. Selon les applications, la réversibilité est souhaitable ou non. C'est le cas par exemple des étaux. Rappelons que dans le cas irréversible, le rendement est toujours inférieur à 1/2 et qu'il est donc impératif d'en tenir compte dans le calcul des puissances et couples moteurs nécessaires à l'actionnement du système mécanique.

Examinons le cas de la transmission par vis et écrou. La rotationd'un tour de la vis provoque le mouvement de translation d'un corps, par exemple un chariot (Fig. 2.6). A chaque tour de la vis correspond une avance du chariot égale au pas p de la vis. En notant N la fréquence de rotation de la vis, la vitesse v du chariot est donnée par

$$v = N p \tag{2.18}$$

Supposons que la vis envisagée ait un rendement η . La puissance à la vis est donnée par

$$\mathcal{P}_{vis} = M_{t,vis} \cdot 2\pi N \tag{2.19}$$

Si le chariot doit vaincre une force F, la puissance correspondante vaudra

$$\mathcal{P}_{chariot} = F v \tag{2.20}$$

Pour obtenir le moment que doit fournir la vis, on écrit que la puissance reçue par le chariot est égale à la puissance de la vis multipliée par le rendement,

$$\mathcal{P}_{chariot} = \eta \, \mathcal{P}_{vis} \tag{2.21}$$

soit explicitement

$$F v = \eta M_{t,vis} \cdot 2\pi N$$

ce qui donne

$$M_{t,vis} = \frac{1}{\eta} F \frac{v}{2\pi N} = \frac{1}{\eta} F \frac{N p}{2\pi N} = \frac{1}{\eta} F \frac{p}{2\pi}$$
(2.22)

2.4 EFFORTS SECONDAIRES DANS LES ENGRENAGES

2.4.1 Engrenages à dentures droites

Commençons par préciser le vocabulaire exact relatif aux engrenages. Un engrenage est un système dans lequel deux roues dentées engrènent entre elles. On appelle généralement *pignon* la petite roue dentée, l'autre étant

FIGURE 2.7 – Engrenage à denture droite

simplement dénommée *roue*. Affectons ici d'un indice 2, les grandeurs relatives au pignon et d'un indice 1 les grandeurs relatives à la roue (Fig. 2.7). Nous savons que l'effet des dents est d'amener les circonférences primitives à rouler sans glisser l'une sur l'autre. Leur vitesse commune v au point de contact est donc

$$v = \omega_1 \frac{d_{01}}{2} = \omega_2 \frac{d_{02}}{2} \tag{2.23}$$

où d_{01} et d_{02} sont les diamètres primitifs des cylindres équivalents aux engrenages qui roulent l'un sur l'autre sans glisser.

Pour que les dents d'une des deux roues puissent entrer et sortir des entredents de la roue conjuguée, il faut évidemment qu'elles soient plus étroites en leur sommet qu'en leur base. Au point de contact, le profil de la dent a donc sa normale inclinée d'un angle α par rapport à la tangente au cercle passant par ce point de contact. Cet angle est appelé *angle de pression*. La dent conjuguée doit à ce moment avoir, au point de contact, le même angle. C'est à partir de ces conditions que l'on détermine le profil des dents, dont l'étude précise relève d'un chapitre particulier de ce cours. En transmission de puissance, on utilise exclusivement le profil en développante de cercle. Il possède cette propriété fondamentale que l'angle de pression reste constant tout au long de l'engrènement. A l'heure actuelle, cet angle est normalisé à la valeur

$$\alpha = 20^{\circ} \tag{2.24}$$

FIGURE 2.8 – Efforts dans un engrenage à denture droite

Si l'on néglige les frottements, l'action de la roue menante sur la roue menée est située sur la normale commune aux deux profils. On a donc (Figure 2.8) : — Force tangentielle F_t :

$$F_t = Q = \frac{\mathcal{P}}{v} = \frac{\mathcal{P}2}{\omega d_0} \tag{2.25}$$

2.4. EFFORTS SECONDAIRES DANS LES ENGRENAGES

— Force normale F_r :

$$F_r = F_t \tan \alpha \tag{2.26}$$

Pour un angle de pression de 20°, la tangente vaut 0.36, ce qui signifie que l'effort secondaire F_r vaut ici 36 % de l'effort actif F_t . En se référant à la Figure 2.8, les forces ci-dessus induisent les sollicitations suivantes pour l'arbre :

— Moment de torsion $M_t = F_t d_0/2$;

— Flexion dans le plan xOz, sous l'effet de l'effort tranchant F_t ;

— Flexion dans le plan yOz, sous l'effet de l'effort tranchant F_r .

2.4.2 Engrenages à denture hélicoïdale

FIGURE 2.9 – Engrenage à denture hélicoïdale

Diverses considérations pratiques, au rang desquelles interviennent le silence de fonctionnement et la régularité de l'engrènement, conduisent à préférer dans bien des cas des dentures hélicoïdales. Leur caractéristique est que les dents sont inclinées d'un angle β par rapport à la génératrice du cylindre primitif. Cet angle d'hélice varie entre 8° et 20° selon les applications. Il vaut souvent 10°.

Dans le plan normal à la denture, la force normale à la denture F_n donne lieu à une composante radiale F_r et une composante dans le plan tangent F_t . On a donc (voir Figure 2.9) :

$$F_t = F_n \cos \alpha \tag{2.27}$$

$$F_r = F_n \sin \alpha \tag{2.28}$$

Soit en éliminant le module de la force normale F_n

$$F_r = F_t \tan \alpha \tag{2.29}$$

et l'angle de pression de contact reste en général de $\alpha = 20^{\circ}$. Mais du fait de l'angle d'hélice β , la force tangentielle F_t se décompose elle-même en une composante active Q et une force axiale F_a . On a donc

$$Q = F_t \cos\beta \tag{2.30}$$

$$F_a = F_t \sin\beta \tag{2.31}$$

 soit

$$F_a = Q \tan \beta \tag{2.32}$$

$$F_t = \frac{Q}{\cos\beta} \tag{2.33}$$

L'effort productif Q est quant à lui donné par la puissance à transmettre

$$Q = \frac{\mathcal{P}}{\omega \frac{d_0}{2}} \tag{2.34}$$

En définitive, tout se déduit de la puis sance à transmettre et de l'effort productif Q :

$$Q = \frac{\mathcal{P}}{\omega \frac{d_0}{2}} \tag{2.35}$$

$$F_a = Q \tan \beta \tag{2.36}$$

$$F_r = Q \frac{\tan \alpha}{\cos \beta} \tag{2.37}$$

Les efforts de denture soumettent l'arbre à

- un moment de torsion

$$M_t = Q \frac{d_0}{2} \tag{2.38}$$

- une flexion dans le plan xOz, due aux efforts F_r et F_a
- une flexion dans le plan yOz, due à l'effort Q
- un effort axial F_a qui devra être repris par une butée.

Remarque importante : l'effort axial change de sens avec le couple.

FIGURE 2.10 – Engrenage à denture conique

2.4.3 Engrenages coniques à denture droite

Nous nous limiterons au cas courant de l'engrenage entre deux arbres perpendiculaires. Les deux demi-angles au sommet des cônes, δ_1 et δ_2 repris à la Figure 2.10 sont liés par les relations :

$$\delta_1 + \delta_2 = \frac{\pi}{2} \tag{2.39}$$

$$\frac{D_1}{2} = \frac{D_2}{2} \tan \delta_1 \tag{2.40}$$

$$\frac{D_2}{2} = \frac{D_1}{2} \tan \delta_2 \tag{2.41}$$

ce qui implique, en notant Z le nombre de dents,

$$\tan \delta_1 = \frac{D_1}{D_2} = \frac{Z_1}{Z_2}$$
 (2.42)

$$\tan \delta_2 = \frac{D_2}{D_1} = \frac{Z_2}{Z_1} \tag{2.43}$$

La force active vaut

$$Q = \frac{\mathcal{P}}{\omega_1 \frac{D_1}{2}} = \frac{\mathcal{P}}{\omega_2 \frac{D_2}{2}} \tag{2.44}$$

La composante normale à la ligne OA, dans le plan BAC, vaut

$$F_n = Q \, \tan \alpha \tag{2.45}$$

où α est l'angle de pression dans le plan normal au denture. Elle se décompose en

$$F_{r1} = F_{a2} = F_n \cos \delta_1 = F_n \sin \delta_2$$
 (2.46)

$$F_{r2} = F_{a1} = F_n \sin \delta_1 = F_n \cos \delta_2$$
 (2.47)

2.4.4 Efforts secondaires dans les transmissions par courroie

Les courroies seront étudiés lors du chapitre consacrée à ce thème, toutefois nous livrons ici un résumé des résultats nécessaires à l'étude et à la conception préliminaire des systèmes mécaniques impliquant des courroies. En particulier on estimera de manière approchée les efforts actifs et les efforts secondaires qui en découlent. On peut d'ores et déjà remarquer que ces efforts secondaires sont de loin supérieurs à l'éffort actif Q.

Géométrie de la transmission

FIGURE 2.11 – Transmission par courroie sans tendeur

La géométrie d'une transmission classique par courroie sans tendeur est représentée à la Figure 2.11. Les deux poulies ont pour diamètres respectifs D pour la grande et d pour la petite. L'arc sur lequel la courroie s'enroule sur la jante d'une poulie s'appelle l'arc embrassé. Notons le Ω_G pour la grande poulie et Ω_P pour la petite. Entre celles-ci, pour autant que la tension de la courroie soit suffisante, la courroie suit la tangente commune aux deux poulies. Ces parties de la courroie qui sont en l'air sont appelés les *brins*. La distance *EA* entre les axes des deux poulies est appelée l'*entraxe*.

Appelons β la différence

$$\beta = \frac{\pi}{2} - \frac{\Omega_P}{2}$$

Il ressort de la Figure 2.11 que

$$\sin\beta = \frac{D-d}{2EA} \tag{2.48}$$

On a alors

$$\Omega_P = \alpha_P = \pi - 2\beta \tag{2.49}$$

$$\Omega_G = \alpha_G = \pi + 2\beta \tag{2.50}$$

Enfin la longueur de la courroie se calcule par

$$\mathcal{L} = \frac{d}{2} \Omega_P + \frac{D}{2} \Omega_G + 2 EA \cos \beta \qquad (2.51)$$

Ce n'est pas la longueur relaxée, car la courroie est montée sous une tension de pose T_0 . En vertu de la loi de Hooke, la longueur relaxée est égale à

$$\mathcal{L}_0 = \frac{\mathcal{L}}{1 + \frac{T_0}{ES}} \tag{2.52}$$

où E est la module de Young de la courroie et S sa section droite.

2.4.5 Rapport de transmission

Une transmission par courroie ne peut pas être intrinsèquement homocinétique pour trois raisons :

- L'élasticité relative de la courroie autorise celle-ci à s'allonger selon l'intensité des tensions de fonctionnement;
- Le contact de la courroie sur la poulie sans obstable n'exclut pas le glissement d'ensemble, toujours possible lors d'une surcharge;
- La courroie rampe le long de son contact curviligne avec chacune des deux poulies. Ce phénomène qui se décrit au moment du traitement de l'équilibre de la courroie le long des jantes des poulies conduit à une glissement systémique pouvant faire varier de 2 % le rapport de transmission.

Calculons à présent le rapport de transmission dans le cas idéalisé d'une transmission parfaitement homocinétique. exprimons l'égalité de la vitesse de défilement v de la courroie avec les vitesses tangentielles à la jante des poulies :

$$v = \omega_1 \frac{d_1}{2} = \omega_2 \frac{d_2}{2}$$

On trouve le rapport de réduction entre les deux poulies.

$$i = \frac{\omega_2}{\omega_1} = \frac{d_1}{d_2}$$
 (2.53)

En charge, l'allongement d'une courroie varie d'une façon réversible suivant l'intensité des tensions qu'elle supporte. L'allongement d'un élément de courroie est plus important sur le brin tendu que sur le brin mou. Par ailleurs cet allongement varie progressivement entre les point A et B lieux d'entrée et de sortie de la courroie sur la poulie. Il en résulte un glissement relatif entre la courroie et la poulie et donc une vitesse de glissement fonctionnement non ulle. On dit que la courroie rampe sur la poulie. On parle aussi de mouvement vermiculaire. Si la tension exercée en R sur un élément de courroie de longueur $rd\theta$ est F, alors l'hypothèse d'un allongement suivant la loi de Hooke s'écrit.

avec

$$\epsilon \ = \ \frac{\Delta \widehat{SR}}{SR} \ = \ \frac{\Delta \widehat{SR}}{r d\theta}$$

 $\sigma = E\epsilon$

Soit

$$\frac{F}{S} = E \frac{\Delta SR}{rd\theta}$$
$$\Delta \widehat{SR} = \frac{Frd\theta}{ES}$$

d'où

où E est le module de Young de la courroie et S l'aide de la section droite.

Comme F varie le long de θ , l'allongement $\Delta \widehat{SR}$ varie le long du contact curviligne \widehat{AB} . Ce phénomène existe sur les deux poulies, motrice et réceptrice. Quand le glissement relatif n'est pas négligeable, le rapport de transmission a pour expression :

$$i = (1-g)\frac{d_1}{d_2} \tag{2.54}$$

Une valeur typique du glissement g est 2%.

FIGURE 2.12 – Couple effectif C et efforts dans les brins tendu T et mou t

Tensions dans les brins d'une courroie

Soit C_1 le couple moteur délivré par la poulie motrice 1. Pendant la transmission le brin supérieur est tendu tandis que le brin inférieur est mou.

Pour déterminer T et t, les tensions respectivement dans les brins tendus et mous, on dispose d'un système de deux équations : la première est issue de l'expression de la puissance transmise alors que la seconde résulte l'équilibre dynamique d'un élément de courroie. Cette dernière expression est également appelée équation d'Euler.

La résolution du système conduit souvent à des résultats théoriques qu'il convient de corriger si l'on veut se rapprocher des tensions réelles préconisées par les fabriquants.

Soit C_2 le couple résistant à la poulie 2. En régime établi l'équation d'équilibre des moments autour de l'axe de la poulie 2 s'écrit :

$$C_2 = T R_2 - t R_2 \tag{2.55}$$

soit

$$T - t = \frac{C_2}{d_2/2}$$
(2.56)

Sur la poulie 1, on a de même :

$$T - t = \frac{C_1}{d_1/2}$$
(2.57)

Les relations (2.55) et (2.56) constituent la première équation du système permettant de déterminer les tensions T et t. Les couples C_1 et C_2 s'obtiennent à partir de la puissance \mathcal{P} à transmettre :

$$C_1 = \frac{\mathcal{P}}{\omega_1}$$
 et $C_2 = \frac{\mathcal{P}}{\omega_2}$ (2.58)

FIGURE 2.13 – Equilibre d'un élément de courroie sous l'effet des forces centrifuges et des forces de frottement entre la courroie et la poulie

La seconde équation est issue de l'équilibre dynamique d'un élément de courroie. L'équilibre d'un élément de courroie de longueur $Rd\theta$ est représenté à la Figure 2.13. Sa masse est dm. La vitesse linéaire de la courroie le long de la jante est v.

L'équilibre radial s'écrit :

$$dF_c = N \sin \frac{d\theta}{2} + (N + dN) \sin \frac{d\theta}{2} - p R d\theta \qquad (2.59)$$

tandis que l'équilibre circonférentiel donne :

$$(N + dN) \cos \frac{d\theta}{2} - N \cos \frac{d\theta}{2} = q R d\theta \qquad (2.60)$$

Soit m' la masse linéique de la courroie, les forces centrifuges s'écrivent :

$$F_c = m' R \, d\theta \, \frac{v^2}{R}$$

On peut également négliger les termes d'ordre supérieur

$$dN \ d\theta \ll 1$$

et linéariser les fonctions sinus et consinus.

$$\cos d\theta \simeq 1$$
 et $\sin d\theta \simeq d\theta$

Il vient

$$m' R d\theta \frac{v^2}{R} = 2 N \frac{d\theta}{2} - p R d\theta$$
$$dN = q R d\theta$$

Après simplification, on trouve :

$$N - m' v^2 = p R (2.61)$$

$$\frac{dN}{d\theta} = q R \tag{2.62}$$

Il faut maintenant écrire la condition de liaison entre la pression de contact entre la courroie et la jante et la force de frottement qui s'y développe. On note par μ le coefficient de frottement entre la poulie et la courroie.

$$q \leq \mu p \tag{2.63}$$

En utilisant les deux équations d'équilibre (2.61) et (2.62), on peut écrire

$$\frac{dN}{d\theta} \leq \mu \left(N - m' v^2 \right)$$

Dénotons par \overline{N} , la traction amputée de la composnate centrifuge :

$$\bar{N} = N - m'v^2 \tag{2.64}$$

On a

$$\frac{\bar{N}}{d\theta} \le \mu \,\bar{N} \tag{2.65}$$

Si on se souvent que l'effort de traction vaut N = t en $\theta = 0$ et que N = T en $\theta = \Omega$, on trouve successivement :

$$\ln \bar{N} \leq \ln \bar{t} + \mu \theta$$

 et

$$\frac{\bar{T}}{\bar{t}} \le \exp(\mu\Omega) \tag{2.66}$$

Si la transmission travaille à la limite du glissement, l'inégalité se transforme en égalité et l'équilibre radial et tangentiel du morceau de courroie permet de donner l'expression qui lie les tensions dans les brins tendus et mous.

$$\left|\frac{T - m'v^2}{t - m'v^2} = \exp(\mu \,\Omega)\right| \tag{2.67}$$

Cette équation constitute la deuxième équation du système permettant de déterminer les tensions dans les brins tendus T et mous t.

La première composante

$$T_c = m'v^2$$

est liée aux forces centrifuges et à la vitesse de défilement v. Elle est appelée *tension centrifuge*. Elle est indépendante des rayons des poulies. Cette tension nait tout au long de la courroie et ne produit aucun effort de transmission. Elle est uniquement due aux forces centrifuges.

Les tensions productives moyennes

$$\bar{T} = T - m'v^2 \bar{t} = t - m'v^2$$

sont celles qui produisent l'effort Q lié à la transmission de couple et de puissance.

$$Q = T - \bar{t} \tag{2.68}$$

Soit \overline{T}_0 la moyenne des tensions productive des brins tendus et mous.

$$\bar{T}_0 = \frac{1}{2} \left(\bar{T} + \bar{t} \right)$$
 (2.69)

Calculons le ratio entre l'effort périphérique Q à la valeur moyenne des tensions \overline{T}_0 . Il vient

$$\frac{Q}{2\,\bar{T}_0} = \frac{\bar{T} - \bar{t}}{\bar{T} + \bar{t}} = \tanh\frac{\mu\,\Omega}{2}$$

On peut donc écrire

$$Q = \bar{T}_0 \tanh \frac{\mu \Omega}{2} \tag{2.70}$$

On en conclu que pour qu'il y ait un effort non nul et donc un couple transmis, il est impératif d'avoir une tension initiale supérieure à zéro.

Tension de pose

L'existence des tensions de fonctionnement T et t est due à celle d'une tension initiale T_0 appliquée à l'arrêt. En effet cette *tension de pose* donne naissance aux actions de contact initiales entre la poulie et la courroie nécessaire à l'entraînement sans glissement.

Une approche élémentaire consiste à appliquer une tension de pose :

$$T_i = \frac{1}{2} (T+t)$$
 (2.71)

On peut montrer que suite à la mise en place d'un dispositif de mis sous tension initiale qui procède généralement de l'imposition d'une allongement initial de la courroie, on a

$$T_i = \frac{T+t}{2} = \frac{(\bar{T}+m'v^2) + (\bar{t}+m'v^2)}{2} = \bar{T} + m'v^2 \qquad (2.72)$$

ceci signifie que la tension de pose étant fixée, la tension productive moyenne va diminuer d'autant plus vite que la vitesse est grande. L'effort tangentiel va donc aussi dminiuer en conséquence :

$$Q = (T_i - m'v^2) \tanh \frac{\mu \Omega}{2}$$
(2.73)

Dans le chapitre dévoué à l'étude des courroies, on verra différentes dispositions constructives qui permettent le réglage de cette tension.

Efforts transmis aux arbres

L'interaction entre la poulie et la courroie se résume aux seuls efforts à l'arrêt. Ainsi dans le cas d'une poulie motrice représentée à la Figure 2.14, la composante de l'effort transmis à l'arbre le long de la ligne des centres vaut

$$F_1 = \bar{T} \sin \frac{\Omega}{2} + \bar{t} \sin \frac{\Omega}{2} = 2 \bar{T}_0 \sin \frac{\Omega}{2}$$
(2.74)

tandis que la composante perpendiculaire à la ligne d'entraxe vaut :

$$F_2 = \bar{T} \cos \frac{\Omega}{2} - \bar{t} \cos \frac{\Omega}{2} = Q \cos \frac{\Omega}{2}$$
(2.75)

On remarque que comme la tension moyenne $\overline{T}_0 = T_i - m'v^2$ diminue avec la vitesse, il en est de même avec la force F_1 . On notera aussi que cette force est en général nettement plus grande que l'effort actif Q.

FIGURE 2.14 – Efforts transmis aux arbres par une transmission par courroie

FIGURE 2.15 – Courroie trapézoïdale

Courroie trapézoïdale

Les courroies trapézoïdales permettent d'obtenir un frottement équivalent plus grand que les courroies plates. En effet, en se référant à la Figure 2.15, elles reposent sur leurs flancs qui sont inclinés. Les pressions par unité de longueur p_1 sur les flancs ont une résultante radiale

$$p = 2 p_1 \sin \frac{\delta}{2} \tag{2.76}$$

Les efforts tangentiels sur les flancs sont, par unité de longueur q_1 sur chacun d'eux. A la limite du glissement, ils sont donnés par la condition de Coulomb en fonction du coefficient de frottement et de la pression normale :

$$q_1 = \mu \, p_1 \tag{2.77}$$

où μ est le coefficient de frottement entre la courroie et les flas ques de la poulie.

La résultante des efforts tangentiels vaut :

$$q = 2 q_1 = 2 \mu \frac{p}{2 \sin \frac{\delta}{2}} = \mu \frac{p}{\sin \frac{\delta}{2}}$$
(2.78)

On se ramène alors à la théorie des courroies plates en introduisant un *coefficient de frottement équivalent* :

$$\mu_{eff} = \frac{\mu}{\sin\frac{\delta}{2}} \tag{2.79}$$

En pratique l'angle de la gorge de la poulie δ est de l'ordre de 34°, ce qui donne :

$$\frac{1}{\sin\frac{\delta}{2}} = 3.420$$

On obtient ainsi des coefficients de frottements équivalents de l'ordre de 1 à 2.5. Les courroies trapézoïdales peuvent donc transmettre un effort actif plus grand pour la même tension de pose. Toutefois elles ne permettent pas de travailler avec des vitesses aussi grandes que les courroies plates. On ne dépasse guère 30 m/s avec les courroies trapézoidales alors que les courroies plates permettent d'atteindre 50 m/s.

2.4.6 Efforts secondaires dans les transmissions par chaîne

Dans les transmissions par chaîne à rouleaux, les rouleaux transmettent l'effort à la roue dentée avec une certaine obliquité γ égale au demi-angle de la dent (voir Fig. 2.16). Cette obliquité est de l'ordre de 15° à 19°. On a donc, si β est l'angle entre deux maillons, les relations suivantes :

$$N_0 = N_1 \cos\beta + R_1 \cos\gamma \tag{2.80}$$

$$N_1 \sin \beta = R_1 \sin \gamma \tag{2.81}$$

FIGURE 2.16 – Transmission par chaîne à rouleaux

De la seconde equation (2.81), on tire immédiatement

$$R_1 = N_1 \, \frac{\sin\beta}{\sin\gamma}$$

ce qui implique

$$N_0 = N_1 \left(\cos \beta + \frac{\sin \beta \cos \gamma}{\sin \gamma} \right) = N_1 \frac{\sin(\beta + \gamma)}{\sin \gamma}$$

Cette relation se reproduit de maillon en maillon. Après n maillons, il subsiste donc un effort

$$N_n = N_0 \left(\frac{\sin\gamma}{\sin(\beta+\gamma)}\right)^n \tag{2.82}$$

On a évidemment

$$\beta = \frac{2\pi}{Z}$$

où Z est le nombre de dents de la roue. Le nombre de dents en prise est donné par la fraction de ce nombre de dents située dans l'arc embrassé Ω , soit

$$Z_P = \text{partie entière de } \left(Z\frac{\Omega}{2\pi}\right)$$
 (2.83)

où Ω est l'arc embrassé. L'effort au brin mou t est donc relié à l'effort du brin tendu $T = N_0$ par la relation :

$$t = T \left(\frac{\sin\gamma}{\sin(\beta+\gamma)}\right)^{Z_P}$$

Ainsi par exemple pour $\gamma = 15^{\circ}$ et Z = 17 dents, on a

$$\beta = \frac{360}{17} = 21.18^{\circ}$$

 et

$$\frac{\sin\gamma}{\sin(\beta+\gamma)} = \frac{\sin 15^{\circ}}{\sin(36\cdot18^{\circ})} = 0.4384$$

Pour un arc embrassé est de 180°, le nombre de dents en prise vaut,

$$Z_P$$
 = partie entière de $\left(17\frac{180}{360}\right)$ = 8

On obtient donc

$$\frac{t}{T} = (0.4384)^8 = 0.001364$$

L'effort dans le brin mou est donc $n\acute{e}gligeable$ et on peut écrire sans grande erreur

$$T - t \approx T = Q$$

L'effort sur l'axe est dès lors approximativement égal à l'effort actif Q, dans la direction du brin tendu. C'est là l'avantage des chaînes sur les courroies : à effort actif égal, elles soumettent l'arbre à des efforts bien moindres.

FIGURE 2.17 – Effet de polygone par dans une transmission par chaîne

Il existe cependant un inconvénient aux transmissions par chaînes. Il s'agit de l'effet de polygone, qui consiste en ceci : supposons (Fig. 2.17) que la roue motrice tourne à une vitesse de rotation constante ω . Dans la première configuration illustrée à la Figure 2.17, la vitesse du brin tendu de la chaîne est donnée par

$$v = \omega R$$

tandis que dans la seconde configuration, elle vaut

$$v \;=\; \omega \; R \; \cos \frac{\beta}{2}$$

La transmission du mouvement n'est donc pas parfaitement régulière, on dit homocinétique. Cet effet s'accentue pour les roues à faible nombre de dents, pour les quelles l'angle β est relativement grand.

Les courroies crantées s'apparentent aux chaînes pour la transmission de l'effort, avec $\gamma = 20^{\circ} \dots 25^{\circ}$. Elles n'ont pas d'effet de polygone.

Chapitre 3

LA CONCEPTION A LA FATIGUE

3.1 LE PHENOMENE DE FATIGUE

3.1.1 Objet du chapitre

On a très souvent observé en construction de machines et en aéronautique que certaines pièces essentielles soumises à des efforts variables et répétés un grand nombre de fois se rompent brusquement et sans déformations annonciatrices de la rupture. Paradoxalement on peut vérifier que des pièces soumises à des efforts constants plus importants résistent correctement. Ainsi du fait que les efforts sont variables, leur action est plus dangereuse.

On appelle *fatigue* la cause, en apparence mystérieuse de cette défaillance à laquelle aucun matériau n'échappe sous l'action des efforts variables (R. Cazaud [7]). La fatigue désigne l'endommagement d'une pièce sous l'effet d'efforts répétés ou plus généralement variable. Il en résulte une déterioration des propriétés matériaux au cours du temps essentiellement due à l'apparition de micro fissures et aboutissant finalement à la la rupture brutale de la pièce endommagée. Le fatigue est un phénomène distinct de l'usure.

Le phénomène de fatigue revêt une importance considérable puisque l'on estime généralement que 90 % des ruptures de pièces en mécanique des machines ou en aéronautique sont imputables au phénomène de fatigue. La compréhension et la maîtrise du phénomène de fatigue est donc captiale pour l'ingénieur et la conception mécanique et aéronautique.

L'étude de la résistance de toute construction soumise à des sollicitations semi-périodiques dépend d'un très grand nombre de paramètres par ailleurs interconnectés. En fait, les données d'un problème de fatigue peuvent être groupés comme suit : d'abord celles qui définissent les formes, ensuite celles qui sont propres à la structure, enfin celles qui concernent les conditions mécaniques, physiques et chimiques des sollicitations.

Le phénomène de fatigue est assurément complexe. Il ne peut être question de l'analyser ici dans son intégralité. L'objet du présent chapitre est en vérité moins ambitieux : il consiste à proposer une méthode de dimensionhement des éléments de machine plus fine que celle qui sont généralement utilisées dans les techniques d'avant-projet où l'on considère une contrainte limite admissible réduite. On veut utiliser les connaissances de bases accumulées dans le domaine de la mécanique de la fatigue pour énoncer quelques règles fondamentales concernant la conception et le dessin de pièces et composants conduisant à une durée de vie améliorée. Cette méthode se veut être une approche rationnelle du problème. Toutefois dans la pratique industrielle, il est entendu qu'étant donné la grande complexité du phénomène de fatigue et le nombre de facteurs dont il dépend, seuls les essais directs sur la pièce, dans des conditions aussi proches que possible de la réalité pourront donner des renseignements fiables. Même si l'analyse précise et quantitative du phénomène proposée ici est limitée aux cas relativement simples, il n'en reste pas moins vrai gue le respect de quelques grands principes qui seront exposé à la fin du chapitre doit conduire le plus souvent à des améliorations positifs.

3.1.2 Brève historique

Le phénomène de fatigue est apparu au grand jour lors de l'essor de la conception des machines au 19ème siècle et en pariculier avec les chemins de fer. Wihlelm Albert identifie le problème dès 1829 dans la rupture de chaînes de puits de mine et il effectue les premiers essais de fatigue répertoriés. En 1839, Jean-Victor Poncelet utilise pour la première fois le terme fatigue. Toutefois c'est l'accident de train de Meudon en France en 1982 causant la mort de nombreux invités revenant des fêtes organisées à Versailles pour l'anniversaire du roi Louis-Philippe (Figure 3.1) qui le problème au devant de la scène. Rankine identifie l'origine du déraillement dans la rupture par fatigue d'un essieu de la locomotive (Figure 3.2).

En 1852, le ministre prussien du commerce charge le savant August Wöhler de travailler sur les ruptures d'axes d'essieux de trains. Wöhler expose ses travaux à l'exposition universelle de 1867 à Paris. Il est le père des travaux décrivant et expliquant le phénomène de fatigue.

Avec l'essor de l'aéronuatique le phénomène de fatigue prend un second virage au cours des années 1953 et 1954. Deux De Havilland DH 106 COMET

FIGURE 3.1 – Accident ferroviaire de Meudon de 1842

FIGURE 3.2 – Accident ferroviaire de Meudon de 1842 : identification du problème de rupture d'un essieu par Rankine

explosent en plein vol, à quelques semaines d'intervalle. Les accidents sont imputés à une rupture par fatigue des tôles d'aluminium suite à des fissures par fatigue aux trous de rivets du fuselage proches des hublots (Figures 3.3 et). Ces accidents relancent l'étude des phénomènes par fatigue. En particulier, les accidents poussent S. S. Manson et L. F. Coffin à travailler sur la fatigue oligo-cyclique dès 1954. Les développements théoriques aboutissent alors à la théorie de la mécanique de la rupture et de l'endommagement.

Malgré les progrès accomplis, les accidents par fatigue restent une préoccupation majeure conduisant parfois à des conséquences désastreuses ou spectaculaires comme l'illustre l'accident du vol ALOHA 243 où un Boeing B737-200 de la compagnie Aloha Airlines perd un partie importante de son fuselage et de sa structure en plein vol le 28 avril 1988 (Figure 3.5) suite à la propagation d'une fissure le long de lignes de rivets. Heuseusement cette fois, ceci s'est terminé avec un nombre très limité de perte de vies humaines (une hôtesse portée disparue et 65 passagers et membres d'équipage blessés).

FIGURE 3.3 – Accident aérien du COMETT

FIGURE 3.4 – Accident aérien du COMETT

3.1.3 Les différentes phases d'une rupture par fatigue

Lors des essais par fatigue, on observe différentes phases dans l'endommagement du matériaux et la dégradation de la pièce (Figure 3.6).

Phase I : Amorçage (inition) de la fissure. La phase d'initiation peut représenter jusqu'à 80 à 90% de la durée de vie de la pièce comme dans le cas de la rupture d'éléments de machine. Au de cette phase on assiste à la germination puis à la croissance de multiples microfissures. Toute discontinuité

FIGURE 3.5 – Accident aérien du vol ALHOA 243

de surface, défaut cristallin, inclusion de surface, dommage lié à l'usinage ou à un accident, piqûres de corrosion... favorisent cette germination. Les microfissures progressent puis coalescent pour former in fine une macrofissure. La phase I se termine typiquement lorsque la fissure détectable c'est-à-dire dès qu'elle atteint une taille de 0,1 à 1 mm.

Phase II : Propagation de la fissure. La fissure macroscopique se propage alors selon les lois de la mécanique de la rupture. Cette phase est clairement visible dans le faciès de rupture de la pièce. Elle se repère à la multitude de lignes d'arrêt bien identifiables. Chaque ligne d'arrêt correspond à un arrêt à un moment donné du processus de fatigue. La partie de la section correspondant à la phase II présente un aspect soyeux du aux frottements qui existent entre les deux faces de la fissures. Cette phase est typiquement beaucoup plus courte dans les éléments de machine. Elle est souvent négligée dans ce cas de figure. Par contre en aéronautique, la mécanique de la rupture est laregement utilisée pour prédire le nombre de cycles avant rupture et déterminer une taille critique au-dessus de laquelle un remplacement de la pièce est nécessaire.

Phase III : Rupture finale. La rupture finale survient brutalement. La fissure se propage et déchire la section droite. Généralement elle survient parce que la contrainte de rupture est dépassée dans la section résiduelle. Cette dernière partie présente un aspect rugueux typique de la rupture ductile des grains de matière. On distingue parfois des nervures émanant de la dernière ligne d'arrêt est irradiant à travers la section droite. Généralement cette troisième phase est très courte (un voire deux cycles de chargement)

FIGURE 3.6 – Les phases d'une rupture par fatigue

FIGURE 3.7 – Sollicitation pulsatoire

3.1.4 Sollicitations cycliques

Les essais de fatigue sont effectués pour différents types de sollicitations cycliques dont l'allure générale est représentée à la Figure 3.7.

On dénomme par σ_{max} , la valeur maximale de la contrainte de tension et par σ_{min} , la valeur minimale de la contrainte de tension.

A partir de ces valeurs, on peut calculer

— $\sigma_m = \bar{\sigma}$, la valeur moyenne de la tension, caractéristique du cycle de charge, demi somme des tensions extrêmes sur 1e cycle;

$$\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$$

— σ_a : l'amplitude de la composante alternée de la sollicitation, demi-

3.1. LE PHENOMENE DE FATIGUE

différence des tensions extrêmes.

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$$

En outre il est d'usage de définir les paramètres suivants caractérisant la forme du signal et de juger de la sévérité de la sollicitation.

— Le coefficient ϕ , dit de Seefehlner :

$$\phi = \frac{\sigma_{min}}{\sigma_{max}}$$
 avec $-1 \le \phi \le 1$

— Le ratio de contrainte R, identique au coefficient de Seefehlner, il lui est généralement préféré aujourd'hui dans la littérature :

$$R = \frac{\sigma_{min}}{\sigma_{max}}$$

— Le coefficient d'amplitude A

$$A = \frac{\sigma_a}{\sigma_m} = \frac{1-R}{1+R}$$

— Le taux de pulsation ϖ :

$$\varpi = \frac{\sigma_a}{\sigma_{max}} \quad \text{avec} \quad 0 \le \varpi \le 1$$

Trois régimes fondamentaux sont courrament rencontrés : — sollicitations statique :

$$\sigma_{max} = \sigma \qquad \sigma_{min} = \sigma$$

$$\sigma_a = 0 \qquad \sigma_m = \sigma$$

$$R = \phi = +1 \quad \varpi = 0 \quad A = 0$$

— sollicitations répétées ou pulsée :

$$\sigma_{max} = \sigma \qquad \sigma_{min} = 0$$

$$\sigma_a = \sigma/2 \qquad \sigma_m = \sigma/2$$

$$R = \phi = 0 \quad \varpi = 1/2 \quad A = 1$$

— sollicitations alternées :

$$\sigma_{max} = \sigma \qquad \sigma_{min} = -\sigma$$

$$\sigma_a = \sigma \qquad \sigma_m = 0$$

$$R = \phi = -1 \quad \varpi = +1 \quad A = \infty$$

3.1.5 Limite d'endurance - Courbe de Wöhler

La Courbe de Wöhler

L'essai d'un matériau soumis à des efforts variables dans le temps s'appelle un essai d'endurance. Les essais d'endurance sont souvent (mais pas toujours) réalisés pour une tension moyenne nulle ($\sigma_m = \bar{\sigma} = 0$).

Il y a trois facteurs de base qui sont susceptibles de causer la fatigue : 1/ la tension maximale qui doit être suffisamment grande; 2/ une variation suffisamment grande de la contrainte; 3/ un nombre suffisant de cycles pour entraîner la rupture par fatigue. Les essais d'endurance sont classiquement menés en appliquant des efforts de nature cyclique suivant une sinusoïde d'amplitude σ_a et de moyenne $\sigma_m = \bar{\sigma}$.

$$\sigma(t) = \sigma_m + \sigma_a \sin(2\pi f t) \tag{3.1}$$

La sollicitation à laquelle l'éprouvette est soumise peut être de nature différente : traction, compression, flexion, torsion ou combinaison de ces sollicitations. L'essai d'endurance le plus simple est celui agissant par flexion rotative. Les essais d'endurance ont été défini par Moore dont le principe est représenté à la Figure 3.8. Dans cet essai, l'éprouvette de fatigue est encastrée d'un côté dans un manchon et chargé à son extrémité libre par un effort transversal P. Les dimensions de l'éprouvette sont normalisées, jusqu'à l'état de surface qui doit être particulièrement soigné (voir Figure 3.9).

FIGURE 3.8 – Schéma de la machine de test d'endurance de Moore pour une éprouvette en flexion rotative

FIGURE 3.9 – Eprouvette de Moore normalisé pour un essai d'endurance

La tension change de signe à chaque demi-révolution de l'éprouvette et le nombre de cycles de tension est égal au nombre de tours de la machine. Cette tension est d'ailleurs alternée puisque la tension moyenne est nulle.

Usinons à présent une série d'éprouvettes du nême métal et soumettons chacune d'entre elles à un essai d'endurance en faisant varier la charge Pd'une éprouvette à l'autre. Ces éprouvettes se rompront chacune après un nombre de cycles différent.

Traçons un diagramme en portant en abscisse le nombre N de cycles (ou son logarithme décimal $\log_{10} N$) et en ordonnée la tension maximale correspondante. Les points caractéristiques des diverses éprouvettes se disposeront (avec une assez forte dispersion) sur une courbe continue appelée *courbe de* Wöhler (Figure 3.10).

Cette courbe sépare le plan du diagramme en deux zones : une zone supérieure pour laquelle les conditions d'essai correspondent à des ruptures et une zone inférieure pour laquelle la rupture n'intervient jamais. Si on utitise les abscisses logarithmiques, la courbe présente alors une partie droite inclinée suivie d'une partie en asymptote horizontale. La valeur de l'asymptote définit une valeur de la contrainte en deçà de laquelle, aucune rupture ne survient même pour un très grand nombre de cycle. La valeur de la contrainte en dessous de laquelle aucune rupture ne survient est appelée *limite d'endurance*. Elle est souvent dénotée par σ_D .

Domaines de fatigue oligocyclique, d'endurance limitée et illimitée

Une analyse plus appronfondie de la courbe de wöhler permet en réalité de distinguer trois partie (voir Figure 3.11).

Le domaine oligocyclique correspond aux contraintes les plus grandes, en particulier à des contraintes supérieures à la limites élastiques R_e . Le nombre

FIGURE 3.10 – Courbe de Wöhler type - Acier doux ($R_0=440~{\rm MPa})$ - Flexion plane alternée $\bar{\sigma}=0$

FIGURE 3.11 – Courbe de Wöhler : domaines de fatigue oligocyclique, d'endurance limité et illimitée

3.1. LE PHENOMENE DE FATIGUE

de cycle avanr rupture peuvent aller jusque 10^4 voire 10^5 pour les aciers doux. Les éprouvettes atteignent généralement un état d'accomodation plastique ou de rochet élastoplastique. L'*accomodation plastique* se produit lorsque la déformation plastique devient périodique de sorte qu'un cycle d'hystérésis élastoplastique se produit. Le *rochet* se produit lorsque la déformation plastique croît sans cesse, ce qui va provoquer la ruine de la structure en un nombre de cycles relativement faible. La fatigue oligocyclique a été étudiée par Masson et Coffin. Ces auteurs montrent que le comportement est dominé par la déformation plastique et ils proposent la loi suivante pour prédire le nombre de cycles N conduisant à la rupture :

$$N = \left[\frac{\Delta\epsilon^p}{C}\right]^{-\gamma} \tag{3.2}$$

Diverses autres expressions ont été proposées pour représenter la courbe de Wöhler dans la zone des durées de vie faibles et pour déterminer le nombre de cycles à 1a rupture en fonction de la contrainte. Parmi celles-ci, on peut encore citer celle de Weibul qui admet une loi hyperbolique de la forme :

$$N = (\sigma_{max} - \sigma_D)^n \tag{3.3}$$

où n varie de +1 à +2 et celle de Bastenaire :

$$N = \frac{A}{\sigma_{max} - \sigma_D} e^{-(\sigma_{max} - \sigma_D)}$$
(3.4)

avec σ_D la limite d'endurance mesurée.

Cet exposé n'a pas pour ambition de faire une revue détaillée des lois décrivant la fatigue oligocyclique qui n'a pas d'application courante en conception de machine. Le lecteur intéressé pourra toutefois consulter l'ouvrage de référence de Collins [8] pour plus de renseignements.

Le domaine d'endurance limitée est le domaine où la rupture est atteinte après un nombre limité de cycles compris approximativement entre 10^5 et 10^7 cycles. La rupture n'est pas accompagnée de déformation plastique d'ensemble et mesurable. La réponse de l'éprouvette atteint sans ce cas un régime adapté élastique. Il peut y avoir une déformation plastque due aux premiers cycles, mais au bout d'un certain nombre de cycles, elle reste constante. C'est le domaine dans lequel travaillent les structures qui pour diverses raisons doivent avoir des masses et des volumes impérativement faibles, comme c'est le cas pour les structures aéronautiques. Il existe de très nombreuses relations pour relier σ_a et N. Dans ce domaine N croît quand σ_a décroît. Basquin propose la relation :

$$\sigma_a = A N^b$$

où A est un coefficient de résistance à la fatigue et b est un exposant de résistance à la fatigue.

Le **domaine d'endurance illimitée** est également appelé zone de sécurité. Il correspond à la partie de la courbe de Wöhler qui présente une asymptote horizontale (asymptote parallèle à l'axe des N) si elle existe. Pour des sollicitations inférieure à la limite d'endurance σ_D , il n'y aura jamais rupture quelque soit le nombre de cylcles appliqué. σ_D est la limite de fatigue.

L'asymptote horizontale survient pour les aciers entre 10^6 et 10^7 cycles. Pour certains alliages d'aluminium ou de cuivre, le coude est beaucoup moins net et la courbe ne prend une allure horizontale que pour un nombre de cycles de l'ordre de 10^8 comme illustré à la Figure 3.12. Enfin pour certaines conditions d'essai, comme en fatigue sous corrosion, il n'est pas certain que cette partie horizontale puisse exister.

FIGURE 3.12 – Courbe de Wöhler type pour un acier et un alliage d'aluminium

Etant donné que pour certains matériaux il est difficile d'évaluer la limite de fatigue σ_D on introduit la notion de de limite de fatigue conventionnelle $\sigma_D(N)$ ou limite d'endurance. Il s'agit de la plus grande amplitude de la contrainte pour laquelle on caonstate 50% de ruptures après N cycles de sollicitaions. Selon les cas, N varie entre 10⁶ et 10⁹, c'est-à-dire supérieure à la durée de vie envisagée de la pièce. Rappelons que les courbes de Wöhler et la notion de limite de fatigue sont établies pour un niveau de contrainte moyenne donnée.

Nature statistique de la fatigue

La dispersion des résultats des essais de fatigue est un fait d'expérience. Cette dispersion statistique existe malgré les efforts des expérimentateurs pour que maintenir des conditions opératoires soient voisines que possible et pour avoir des éprouvettes aussi identiques que possible. Dès lors on ne peut pas légitimement parler de la limite d'endurance comme d'une valeur fixe et bien déterminée mais on doit regarder la courbe de Wöhler comme une famille de courbes dont chacune représente une probabilité de rupture déterminée \mathbb{P} (figure 3.13).

FIGURE 3.13 – Courbes de Wöhler paramétrée en fonction de la la probabilité \mathbb{P} de rupture - Alliage d'aluminium 75456

Il s'en suit que pour définir une courbe de Wöhler de façon précise, il faut essayer plusieurs éprouvettes au même niveau de tension. La tendance actuelle est d'employer un nombre restreint de niveaux mais d'essayer pour chacun d'eux une population de huit éprouvettes ou plus de manière à pouvoir calculer des valeurs précises de la moyenne et de la dispersion des valeurs de $\log_{10} N$. La courbe de Wöhler moyenne est celle pour laquelle 50% des éprouvettes sont rompues (Figure 3.14).

FIGURE 3.14 – Résistance à la fatigue en flexion rotative $\bar{\sigma} = 0$ d'un alliage duralumin 24 ST superfini. Le nombre de chiffres indiquent le nombre d'essais à chaque niveau de contrainte

Limite d'endurance

La limite d'endurance conventionnelle est la limite supérieure de l'amplitude de la contrainte périodique qui peut être appliquée pendant un nombre conventionnel de cycles sans amener la rupture.

Ce nombre est généralement un multiple de 10^6 soit 10^7 ou encore 310^7 cycles pour les aciers. Il peut être de 10^8 et quelques fois même $5 \, 10^8$ cycles lorsque le coude de la courbe de Wöler n'est pas net.

On se rappelera en définitive, qu'une courbe de Wöhler conduit à une détermination statistique de la limite d'endurance, mesurée pour des conditions donnnées : un matériau déterminé, un type de sollicitation et pour une tension moyenne constante.

La limite d'endurance théorique est la limite supérieure de la contrainte périodique qui peut être appliquée indéfiniment sans amener la rupture. Cependant, cette limite théorique doit être considére avec précaution en pratique puisque tous les mécanismes ont une durée de vie limitée par suite de l'usure, de la corrosion et d'autres causes inhérentes à leur service même.

Ces limites d'endurance seront notées :

- $-R^{\pm}$: sollicitations alternées;
- $\ R_0^+$: sollicitations répétées positives ;

3.1. LE PHENOMENE DE FATIGUE

 $- R^0_-$: sollicitations répétées négatives.

Les paramètres d'influence sur l'endurance

Les expériences sont conventionnellement réalisées sur des éprouvettes polies et de taille normalisée. Néanmoins on peut réaliser des tests d'endurance sur des specimens différents. Les résultats montrent l'influence d'un certains nombre de paramètres.

Accidents de forme (discontinuité dans la géométrie) : Un accident de forme augmente localement le niveau de contrainte.

Effet d'échelle : A niveau de contrainte égale, deux pièces de même géométrie mais de dimensions différentes n'auront pas la même tenue en fatigue. Plus les dimensions d'une pièce croissent, plus sa résistance à la fatigue diminue.

Qualité de l'usinage : Généralement, l'endommagement par fatigue apparaît en premier lieu à la surface des pièces. La prise en compte des deux aspects suivants est important en fatigue.

- l'état de surface
- les contraintes résiduelles : l'usinage peut introduire des contraintes résiduelles de traction en surface (équilibrées en profondeur par des contraintes résiduelles de compression) qui se superposent au chargement mécanique.

Environnement : Un milieu agressif (températures élevées, milieux corrosifs...) aggrave le phénomène de fatigue. Il apparaît des phénomènes comme le fluage ou la corrosion. Leur action est proportionnelle au temps d'exposition.

Taille des grains : Les structures à grains fins présentent une meilleure tenue en fatigue que les structures à gros grains.

Orientation du fibrage par rapport à la direction des efforts : L'orientation générale des grains (fibrage) confère au matériau une anisotropie plus ou moins marquée. Les caractéristiques statiques et la tenue en fatigue seront meilleures dans le sens long du fibrage que dans les autres sens (travers long et travers court).

Taux d'écrouissage : L'écrouissage résultant des opérations de formage a pour effet de consolider le matériau (augmentation de la limite d'élasticité), et par suite, améliore la tenue en fatigue.

Traitement thermique : Suivant que le traitement thermique provoque un adoucissement ou un durcissement du matériau, la tenue en fatigue sera diminuée ou augmentée. De plus, le traitement thermique peut modifier la taille des grains.

Les défauts métallurgiques : Lacunes, défauts interstitiels, précipités et inclusions peuvent être à l'origine de l'endommagement par fatigue.

La nature du chargement : Le chargement peut être de nature périodique de pulsation et d'amplitude constantes, variable par bloc ou variable de manière aléatoire. Quand on charge la structure avec un signal périodique, on note une influence de la forme du signal (sinusoïdal, triangulaire, rectangulaire...), du rapport R et de la contrainte moyenne sur la tenue en fatigue. Par contre, en général on remarque que la fréquence a peu d'influence sauf si on se situe dans les cas de fatigue fluage, de fatigue-corrosion ou de fatigue thermique. Dans le cas signaux de chargement par bloc ou aléatoire, l'endurance est affectée par la présence de surcharges et l'ordre d'apparition des cycles. En particulier il est connu que la répétition périodique d'une surcharge peut retarder la propagation de fissures.

Influence de la contrainte moyenne. Lorsque les essais de fatigue sont réalisés à contrainte moyenne $\sigma_m \neq 0$ non nulle (et constante), la durée de vie est modifiée, en particulier quand cette contrainte moyenne est relativement grande par rapport à la contrainte alternée. En particulier, il faut retenir que une contrainte de traction diminue la durée de vie tandis que une contrainte de compression l'augmente. La limite d'endurance σ_D est aussi modifiée par la superposition d'une contrainte moyenne non nulle. Différents diagrammes permettent de représenter ce phénomène. Une présentation détaillée des diagrammes les plus utilisés peut être trouvée à la Référence [6]

Diagrammes d'endurance

A l'endurance la composante alternée limite σ_a dépend de la composante moyenne σ_m et réciproquement. La courbe d'interaction entre ces deux composantes s'appelle le *diagramme d'endurance*. Il en existe plusieurs représentations.

En Allemagne, on utilise presque exclusivement le diagramme de Goodman-Smith où l'on porte en absisse la contrainte moyenne σ_m et en ordonnée σ_{max} . En outre, sur ce diagramme on porte également la courbe et $\sigma_{min} = \sigma_m - \sigma_a$. Le diagramme de Goodman-Smith est schématisé à la Figure 3.15-A.

Dans la littérature anglo-saxonne, on utilise surtout le diagramme de Haigh schématisé à la Figure 3.15-B où l'on porte σ_m en absisse et σ_a en ordonnée.

FIGURE 3.15 – Diagrammes d'endurance : A/ Goodman-Smith - B/ Haigh

3.1.6 Diagrammes de Haigh

Sur ce diagramme, l'amplitude de contrainte σ_a est portée en fonction de la contrainte moyenne σ_m à laquelle a été réalisé l'essai de fatigue. Deux points particuliers sont à considérer (voir Figure 3.15-B) :

- Le point A qui représente la limite d'endurance $\sigma_D(N) = R_{\pm}$ en sollicitation purement alternée.
- Le point P qui représente le comportement limite du matériau pour une contrainte alternée nulle.

L'ensemble des limites d'endurance observées pour diverses valeurs de la contrainte moyenne se placent alors sur la courbe AP ajustée en fonction des résultats d'essais.

Un certain nombre de modèles mathématiques pour rendre compte de la courbe délimitant l'interaction entre σ_a et σ_m à partir de données recueillies sur des essais de fatigue menés en condition de flexion alternée (voir Figure 3.16). Goodman propose un modèle linéaire entre la limite d'endurance en condition alternée $\sigma_a = \sigma_D = R_{\pm}$ et la limite de rupture R_m .

$$\sigma_a = \sigma_D \left(1 - \frac{\sigma_m}{R_m} \right) \tag{3.5}$$

Gerber propose quant à lui de modéliser la courbe par une parabole

$$\sigma_a = \sigma_D \left(1 - \left(\frac{\sigma_m}{R_m} \right)^2 \right) \tag{3.6}$$

FIGURE 3.16 – Diagramme de Haigh. Modèles de Goodman, Gerber et de Soderberg

Les résultats de test pour des matériaux ductiles montrent généralement une meilleure concordance avec le modèle parabolique de Gerber. Toutefois à cause de la dispersion des résultats d'expérience des tests de fatigue et le fait que les données sur des éprouvettes entaillées coïncident de meilleure manière avec le modèle linéaire de Goodman, il est courant dans la pratique de conception d'adopter la droite de Goodman plus conservative. Si la conception de la pièce est basée sur un design élastique à la place d'un design à la rupture, chose courante en conception d'éléments de machine, alors on se tourne vers la droite de Soderberg qui modélise la limite d'endurance en fonction de la contrainte moyenne comme une droite entre les limites d'endurance $\sigma_a = R_{\pm}$ et $\sigma_m = R_e$.

$$\sigma_a = \sigma_D \left(1 - \frac{\sigma_m}{R_e} \right) \tag{3.7}$$

L'expérience montre plusieurs choses. La droite de Söderberg et, dans une moindre mesure, la droite de Goodman sont trop pénalisantes pour $\sigma_m > 0$ et trop optimistes pour $\sigma_< 0$. La parabole de Gerber est assez juste pour $\sigma_m > 0$ mais elle est pénalisante pour $\sigma_m < 0$ puisqu'elle ne rend pas compte de l'augmentation de l'endurance σ_a dans ce domaine. Pour ces différentes raisons et en accord avec l'expérience, la meilleure forme de diagramme de Haigh est celle du diagramme de Goodman adaptée à celui de Haigh de la manière suivante (voir Figure 3.17) :

FIGURE 3.17 – Construction du diagramme de Haigh connaissant σ_D , R_e et R_m

- On porte une longueur égale à $\sigma_D/2$ sur l'axe des abscisses à gauche du point *B* jusqu'au point B_m .
- A partir de B_m , on porte une longueur verticale égale à $\sigma_D/2$ jusqu'au point D.
- On relie par une droite le point D au point A. On définit ainsi σ_a^{adm} , la frontière du domaine admissible de l'amplitude de la contrainte en fonction de la contrainte moyenne, par l'équation :

$$\sigma_a^{adm} = \frac{-c}{1-c} \sigma_m + \sigma_D \quad \text{pour} \quad \sigma_m \le R_m - \sigma_D/2 \qquad (3.8)$$

avec

$$c = \frac{\sigma_D}{2 R_m}$$

— Pour la compression $\sigma_m < 0$, la compression a un effet favorable sur la limite d'endurance, car elle referme les microfissures. On admet donc généralement qu'en compression la limite d'endurance est préservée. On prolonge donc à l'horizontale la valeur $\sigma_a = \sigma_D$ dans la partie $\sigma_m < 0$ jusqu'à ce qu'on atteigne la droite reliant $\sigma_a = R_e$ et $\sigma_m = -R_e$ qui limite la tenue élastique de l'éprouvette.

3.1.7 Diagramme de Goodman - Smith

L'ensemble des limites d'endurance d'un matériau pour la gamme des valeurs de ϕ comprises entre -1 et +1 peut être porté sur un diagramme tel que celui représenté à la Figure 3.18. On y met en absisse la contrainte moyenne σ_m et en ordonnées les contraintes maximale et minimale σ_{max} et σ_{min} . Le diagramme est construit en reportant les expériences réalisées avec différents couples de sollicitations R et A.

FIGURE 3.18 – Diagramme de Goodman - Smith

En construction des machines, on désire éviter les déformations permanentes. En conséquence on limitera σ_{max} à la limite apparente d'élasticité R_e de sorte qu'on peut tronquer le digramme par l'horizontale $\sigma_{max} = R_e$.

En ce qui concerne la composante σ_{min} , on doit constamment vérifier la relation $\bar{\sigma} = (\sigma_{min} + \sigma_{max})/2$. Dès lors la partie de la courbe CJ doit être remplacée par le segment de droite KJ de sorte que l'on ait toujours la symétrie des points par rapport à la bissectrice du premier quadrant. En l'absence de données plus précises, on peut encore simplifier davantage le diagramme de Goodman, en supposant que 1es branches AF et A'J sont rectilignes et remplacées par les segments de droites correspondants. En $\sigma_m =$ 0, sachant que l'angle α entre la courbe et l'horizontale vaut en moyenne 40° et connaissant R_e et R_{\pm} pour le matériau utilisé, on peut tracer un diagramme de Goodman linéarisé tel que celui représenté à la Figure 3.19.

FIGURE 3.19 – Diagramme de Goodman linéarisé (Acier A 37.11)

3.1.8 Diagramme VDI

En Allemagne, on utilise souvent le diagramme VDI qui est une simplification du diagramme de Goodman-Smith dans laquelle la courbe supérieure est remplacée par sa tangente en $\sigma_m = 0$ jusqu'à son point de rencontre Xavec la droite d'ordonnée $\sigma_{max} = R_e$. Ce diagramme, représenté à la Figure 3.20, est un peu optimiste pour les grandes valeurs de σ_m , mais ce fait porte peu à conséquence, car à ce niveau, on est en fait limité par la condition de plastification.

FIGURE 3.20 – Diagramme VDI

3.1.9 Diagramme de Soderberg

Afin de simplifier l'utilisation pratique du diagramme Goodman-Smith lors du pré-dimensionnement, Soderberg a proposé de simplifier le problème en remplaçant les polylignes segments AFK et A'B'JK respectivement par des segments de droite AK et A'K. Il en résulte un diagramme fortement simplifié représenté à la Figure 3.21.

Ainsi on admet que σ_a diminue linéairement de R^{\pm} à 0 quand $\bar{\sigma} = \sigma_m$ augmente de 0 à R_e . Si on transpose cette règle dans le plan ($\bar{\sigma}, \sigma_a$,) typique des diagrammes de Haigh, on obtient un diagramme simple caractérisé par un domaine triangulaire de sécurité pour l'éprouvette normalisée du laboratoire représenté à la Figure 3.22. Les états de contrainte en sécurité se trouvent dans la partie inférieur de la droite d'équation

$$\sigma_a = -C\,\bar{\sigma} + R^{\pm} \quad \text{avec} \quad C = R^{\pm}/R_e \tag{3.9}$$

Cette droite est appelée *Soderberg Failure Line* (SFL). Elle est équivalente au diagramme que l'on pourrait obtenir en linéarisant le diagramme de Haigh.

FIGURE 3.21 – Diagramme de Goodman-Smith simplifié

FIGURE 3.22 – Diagramme de Soderberg

3.1.10 Sécurité par rapport à la Soderberg Failure Line

Soit le digramme de Sodernerg de la Figure 3.23. Soit l'état de tension figuré par le point D ($\sigma'_a, \bar{\sigma}'$). Ce point est intérieur au diagramme de Soder-

FIGURE 3.23 – Sécurité par rapport à la Soderberg Failure Line

berg. Il s'en suit que la tension σ_{max} développée sur le cycle est inférieure à l'endurance et que la durée de vie de l'éprouvette est pratiquement infinie. Introduisons la notion de *sécurité* et calculons celle-ci par rapport aux tensions limites admissibles en fatigue.

Par D traçons la parallèle à la Soderberg failure line. Cette droite coupe l'axe des abscisses en un point qui définit une tension statique équivalente $\bar{\sigma}_{eq}$. De même elle coupe l'axe des ordonnées en un point qui définit une tension purement alternée équivalente $\sigma''_{a,eq}$.

Traçons ensuite le segment OD et prolongeons-le jusqu'à son intersection C avec la SFL. L'état de contrainte en C est défini par sa composante moyenne $\bar{\sigma}$ et sa composante alternée σ_a .

Par le théorème de Thales, tous les segments issus de O sont découpés dans le même rapport par la SFL et sa parallèle passant par D. On peut donc écrire

$$\frac{\sigma_{a,eq}''}{R_{\pm}} = \frac{\bar{\sigma}_{eq}}{R_e} = \frac{OD}{OC} = \frac{\bar{\sigma}'}{\bar{\sigma}} = \frac{\sigma_a'}{\sigma_a}$$
(3.10)

Les deux premiers rapports expriment une sécurité identique respectivement dans le cas d'une sollicitation purement alternée et purement statique. On considère en conséquence que tous les points de la parallèle passant par D sont caractérisés par le même coefficient de sécurité et on adopte :

$$\frac{1}{K_{\sigma}} = \frac{\bar{\sigma}_{eq}}{R_e} = \frac{\sigma_{a,eq}''}{R_{\pm}} \tag{3.11}$$

3.1. LE PHENOMENE DE FATIGUE

De même, dans le cas d'une sollicitation en torsion, on écrirait :

$$\frac{1}{K_{\tau}} = \frac{\bar{\tau}_{eq}}{R''_{e}} = \frac{\tau_{a,eq}}{R''_{\pm}}$$
(3.12)

3.1.11 Fluctuation des charges

Le niveau de charge d'un organe ne reste généralement pas constant au long de sa vie. Il est donc important de pouvoir évaluer l'effet de cycles de charge d'amplitude variable sur la résistance de l'éprouvette normalisée.

Faisons l'hypothèse qu'un certain nombre de cycles n_1 à un niveau σ_1 (Figure 3.24) supérieur à la limite d'endurance produise un dommage déterminé inférieur à l'unité, un dommage unitaire conduisant à la rupture. Si l'éprouvette subit une série de sollicitations $(\sigma_1, n_1), (\sigma_2, n_2), \ldots (\sigma_K, n_K)$, on veut estimer le moment où l'éprouvette arrivera à rupture, c'est-à-dire au dommage unitiare.

FIGURE 3.24 – Diagramme de Wöhler ($\mathbb{P} = 0.5$) - Critère de Miner-Palmgren

Critère de Palmgren - Miner

Si N_1 est le nombre de cycles qui amène la rupture au niveau σ_1 , Miner propose d'estimer le dommage correspondant à n_1 cycles par :

$$D_1 = \frac{n_1}{N_1} \tag{3.13}$$

Supposons que la pièce est sollicitée par n_1 cycles au niveau σ_1 , puis n_2 cycles au niveau σ_2 , et ainsi de suite jusqu'à la sollicitation K caractérisée par n_K cycles au niveau σ_K . Le critère de dommage cumulé de Palmgren-Miner prédit que la ruine survient lorsque le dommage cumulé atteint l'unité :

$$D = \sum_{i=1}^{K} D_i = \sum_{i=1}^{K} \frac{n_i}{N_i} = 1$$
(3.14)

L'expérience a montré que pour les pièces lisses, le critère de Palmgren-Miner est en assez bon accord avec la réalité. Toutefois pour les pièces entaillées, il est aisé de le mettre en défaut en soumettant la pièce à une forte précontrainte statique qui produit des contraintes résiduelles de compression en fond de d'entaille et relève la limite d'endurance alors que par le critère, cette précontrainte devrait avoir un effet quasi nul puisque :

$$\frac{n_i}{N_i} = \frac{1}{N_i} \ll 1$$

Nonobstant ce critère de Palmgren-Miner peut constituer une approche pragmatique du problème tout en sachant que seuls des essais pratiques à l'aide de programme de mise en charge simulant les cycles réels seront seuls capables de donner des informations valables.

3.1.12 Caractéristiques de quelques matériaux utilisés en construction mécanique

Formules utilisables à défaut d'informations précises

Suivant le type de sollicitation

Si on suppose que l'on connaît la limite d'endurance en flexion alternée R_{\pm} , on déterminera une valeur approchée des autres limites d'endurances en utilisant les formules empiriques suivantes.

Traction - compression :

$$(R_{\pm})_{tc} = 0.8 R_{\pm}$$

Torsion alternée :

— Pour l'acier

$$(R_{\pm})'' = 0.6 R_{\pm}$$

— Pour la fonte :

$$0.8 R_{\pm} < (R_{\pm})'' < R_{\pm}$$

Suivant le type de matériaux

Acier

Structure ferritique :

$$R_{\pm} \simeq 0.6 R_0$$

Structure perlitique austénitique :

$$R_{\pm} \simeq 0.4 R_0$$

Structure martensitique :

$$R_{\pm} \simeq 0.33 R_0$$

Aciers coulés :

$$(R_{\pm}) = 0.4 R_0$$

Aciers alliés à haute résistance :

$$R_{\pm} \simeq \alpha R_0 + \beta R_e$$

Formule de Fry, Kessner et Oettel où les valeurs des paramètres α et β sont calculés par interpolation à partir des valeurs suivantes

 $\alpha_1 = 0.15$ $\beta_1 = 0.57$ pour $R_0 = 400 N/mm^2$

 et

$$\alpha_2 = 0.43$$
 $\beta_2 = 0.0$ pour $R_0 = 1400 N/mm^2$

Fonte

Fonte ordinaire :

$$(R_{\pm}) = 0.35 R_0$$

Fonte nodulaire :

$$(R_{\pm}) = 0.4 R_0$$

Alliage d'Aluminium

$$0.25 R_0 \leq (R_{\pm}) \leq 0.45 R_0$$

Alliage de Magnésium

$$0.31 R_0 \leq (R_{\pm}) \leq 0.49 R_0$$

Alliage de Titane

$$(R_{\pm}) \simeq 0.45 R_0$$

Nickel

Nickel en bandes, recuit :

$$(R_{\pm}) = 0.34 R_0$$

Alliage de Ni, suivant mise en oeuvre :

$$0.3 R_0 \leq (R_{\pm}) \leq 0.47 R_0$$

Métal Monel (67%Ni - 30%Cu)

$$(R_{\pm}) = 0.5 R_0$$

Diagramme de Goodman (selon norme DIN)

Aciers ordinaires (DIN 17100)

FIGURE 3.25 – Aciers ordinaires (DIN 17100)

Fonte nodulaires (DIN 1663)

FIGURE 3.26 – Fonte nodulaires (DIN 1663)

Aciers coulés (DIN 1681)

FIGURE 3.27 – Aciers coulés (DIN 1681)

Aciers avec traitement thermique (DIN 17200)

FIGURE 3.28 – Aciers avec traitement thermique (DIN 17200)

Aciers de cémentation (DIN 17210)

FIGURE 3.29 – Aciers de cémentation (DIN 17210)

Endurances moyennes de matériaux non repris dans les diagrammes de Goodman-Smith

Matière	Endurance e	en sollicitat N/mm ²	ions alternées	Endurance en sollicitations répétées N/mm ²			
	Traction compression	Flexion	Torsion	Traction compression	Flexion	Torsion	
Fontes grises lamellaires							
GG 15	37.5	70	65	60	120	90	
GG 20	50	95	85	80	160	120	
GG 25	62.5	120	105	100	200	150	
GG 130	75	140	130	120 [']	240	180	
GG 35	87.5	165	150	140	280	210	
GG 40	100	190	170	160	320	240	
Fontes malléables							
GTW 35	100	140	120	180	250	230	
GTS	80	120	100	150	220	190	
<u>Alliages de cuivre</u>							
G Cu Zn 33 Pb	-	65	40	-	65	40	
Cu Zn 40 Mn Pb	-	240	140	-	240	140	
G Cu Sn 5 Zn Pb	-	35	25	-	35	25	

Tableau A

 $\mbox{Figure 3.30}$ – Endurances moyennes de matériaux non repris dans les diagrammes de Goodman-Smith

Tableau	B									
Matière	Tension de rupture Ro		on de re Ro	Endurance of a constant of a c	en alterné, e le R _o	exprimée	Endurance en répété, exprimée en % de Ro			
		N/mm ² Traction Flexion Torsion		Traction compression	Flexion	Torsion				
Alliages d'Al pour_estampage										
Al Mg, Al Mg Si	100	-	200	50 %	70 %	40 %	80 %	45 %	40 %	
Al Cu Mg,	200	-	350	35 %	50 %	30 %	50 %	45 %	30 %	
	350	-	500	25 %	30 %	20 %	35 %	45 %	20 %	
Alliages d'Al pour moulage										
G - Al Si	150	-	260	30 %	30 %	25 %	30 %	30 %	25 %	
	180	-	300				50 %	50 %	25 %	
Alliage de Mg pour moulage G - Mg Al Zn	160	-	280	25 %	40 %	22 %	25 %	50 %	22 %	

FIGURE 3.31 – Endurances moyennes de matériaux non repris dans les diagrammes de Goodman-Smith

3.2 DIMENSIONNEMENT POUR PLUS D'UN MILLION DE CYCLES

3.2.1 Introduction

Considérons le cas des matériaux ductiles. L'état de contrainte est déterminé par la résistance des matériaux. Un coefficient d'impact peut éventuellement être introduit dans l'évaluation s'il y a lieu.

La capacité à résister indéfiniment à la fatigue en sollicitation cyclique est mesurée par la limite d'endurance déterminée expérimentalement pour le type de sollicitation.

Les limites d'endurance sont déterminées sur de petites éprouvettes polies et doivent être affectées de facteurs correctifs avant d'être appliquées à des pièces industrielles.

3.2.2 Effet d'échelle : coefficient b_1

On constate expérimentalement que la limite d'endurance est plus élevée en flexion rotative R_{\pm} qu'en traction - compression alternée $(R_{\pm})_{tc}$ et qu'elle diminue quand le diamètre de l'éprouvette augmente.

Cet effet est attribué au gradient de contrainte existant en flexion, auquel correspondrait une action de soutien des couches extérieures de la pièces par les couches sous-jacentes moins sollicitées.

Pour la flexion rotative, le coefficient b_1 peut se déduire du diagramme donné à la Figure 3.32.

La formule est encore applicable aux cas de sections carrées ou rectangulaires en flexion et en torsion à condition de prendre une mesure adéquate de la valeur caractéristique d.

En flexion :

- Pour une section carrée, on prend pour d le côté.
- Pour une section rectangulaire, on prend pour d la hauteur mesurée dans le plan de la déformée.

En torsion :

— On prend pour d la diagonal de la section.

FIGURE 3.32 – Effet d'échelle en flexion rotative

3.2.3 Etat de surface : coefficient correcteur b_2

La limite d'endurance dépend considérablement du dégré de finition de la surface de l'éprouvette ainsi que du sens des rayures d'usinage. Le standard de mesure d'état de surface est généralement le R_a , la rugosité moyenne arithmétique ISO, ou le R_t , la rugosité totale utilisée par la DIN.

Du point de vue fatigue, ce seul paramètre ne peut être suffisant pour qualifier l'influence de l'état de surface.

En effet différentes formes de stries de surface présentant le même R_a peuvent donner lieu à des tenues en fatigue fort différentes. La plupart des expérimentateurs ne désignent pas seulement l'état de surface par les valeurs R_a ou R_t : ils introduisent également la méthode utilisée pour la préparation de la pièce.

Pour des pièces tournées grossièrement, on peut ainsi observer des réductions de 15% de la limite d'endurance par rapport au poli standard des éprouvettes de fatigue.

Il est en outre souhaitable d'introduire des stries d'usinage parallèles à la direction de la contrainte principale : dans le cas contraire, on observe une réduction de l'ordre de 26% de la limite de fatigue par rapport à celle obtenue lorsque les stries sont parallèles à la direction de la contrainte principale.

En général, la sensibilité aux défauts de surface est une fonction croissante de la résistance R_0 comme l'illustre la Figure 3.33.

La Figure 3.34 donne une idée de l'influence relative de quelques états de finition particuliers. On notera que 1e polissage produit des contraintes résiduelles de compression favorables à la tenue en fatigue.

FIGURE 3.33 – Facteur d'état de surface b_2 ($R_t = 6.5 R_a$)

FIGURE 3.34 – Comparaison entre divers états de finition (1 psi = 0,07 bar)

L'influence des conditions de surface est plus importante dans le cas de tor-

sion alternée que dans le cas de flexion ou traction-compression, les contraintes de cisaillement à la surface ayant la même valeur que les contraintes maximales de tension-compression sur les plans diagonaux.

. Les coefficients d'échelle et d'état de surface introduits ci-dessus conduisent à l'utilisation d'une limite d'endurance réduite valant :

$$R_{\text{reduite}}^{\pm} = b_1 \, b_2 \, R^{\pm} \tag{3.15}$$

3.2.4 Facteur de concentration de contrainte dans les pièces

Si la pièce est entaillée et présente de ce fait une concentration de contrainte (congés, gorges, rainures de cales, trous de graissage, etc.), il apparaît une baisse considérable de la limite d'endurance.

Définissons le coefficient théorique de concentration de contrainte k_c comme étant le rapport entre la contrainte réelle maximum dans la section entaillée et la contrainte moyenne dans cette section c'est-à-dire :

$$\sigma_{\max} = k_c \, \sigma_{\mathrm{moyen}} \quad \text{avec} \quad \sigma_{\mathrm{moyen}} = \frac{N}{A}$$
 (3.16)

Ce coefficient k_c est le plus généralement déterminé par une méthode expérimentale comme la photoélasticité (voir Figure 3.36) ou bien une méthode numérique comme la méthode des éléments finis (voir Figure 3.37).

Définissons également le facteur d'entaille k_f comme étant le rapport entre les contraintes nominales de rupture par fatigue de la pièce lisse et les contraintes de rupture de la pièce entaillée déterminée expérimentalement.

$$k_f = \frac{R_{\text{pièce lisse}}^{\pm}}{R_{\text{pièce entaillée}}^{\pm}} \ge 1$$
(3.17)

On a pu constater que la diminution de résistance à la fatigue est moindre que celle indiquée par k_c . C'est pourquoi on a introduit la notion d'indice de sensibilité à l'entaille :

$$q = \frac{k_f - 1}{k_c - 1} \tag{3.18}$$

et partant de là :

$$k_f = 1 + q (k_c - 1)$$
(3.19)

3.2. DIMENSIONNEMENT POUR PLUS D'UN MILLION DE CYCLES97

FIGURE 3.35 – Contraintes dans un barreau à gorge

FIGURE 3.36 – Mise en évidence des contraintes par le moyen de la photoélasticité

Les matériaux ductiles présentent généralement une sensibilité à l'entaille plus faible que les matériaux fragiles de par leur aptitude à plastifier localement et à créer ainsi une redistribution des contraintes. Pour des matériaux

FIGURE 3.37 – Mise en évidence des contraintes par le méthode des éléments finis [17]

ductiles, k_f s'applique seulement à la composante variable σ_a . On a donc :

$$\sigma_{\max}^{\text{réel}} = \bar{\sigma} + k_f \,\sigma_a \tag{3.20}$$

 k_f dépendant de la géométrie de l'entaille et des caractéristiques du matériau.

Le coefficient k_f doit être déterminé de préférence par des essais directs. En l'absence de tels renseignements expérimentaux, on déduit k_f , en fonction du coefficient théorique de concentration de contrainte k_c et de l'indice de sensibilité à l'entaille q. k_f n'est jamais supérieur à 4.0; il dépasse quelquefois 3.

Détermination de q

Sur la base d'essais nombreux, Peterson [15, 16] a proposé de faire varier q en fonction du rayon r de l'entaille suivant la loi :

$$q = \frac{1}{1 + a / \sqrt{r}}$$
(3.21)

où a est le coefficient de Neuter.

On trouvera quelques courbes expérimentales types en Figure 3.38. Le tableau 3.1 fournit le coefficient de Neuter a pour plusieurs types d'acier.

FIGURE 3.38 – Coefficient q de sensibilité à l'entaille

Résistance de l'acier R_0	Paramètre a dans formule
en daN/mm^2	(r en mm)
32	0,63
42	$0,\!50$
56	$0,\!40$
70	$0,\!31$
98	$0,\!19$
140	0,079

TABLE 3.1 – Constante *a* fonction de la tension de rupture

Pour les alliages d'aluminium, on adoptera :

$$q = \frac{1}{1 + 0.89/r} \tag{3.22}$$

Détermination de k_c dans le cas d'entailles

Peterson [15] a établi deux formules approchées permettant de calculer le coefficient k_c avec une précision suffisante, dans le cas de barres entaillées et de changements brusques de section (Fig. 3.39 a et b).

Pour les barres plates ou rondes, Peterson propose :

$$k_c = 1 + \frac{1}{\sqrt{A(\rho/t) + B(1 + (\rho/a))^2(\rho/a)}}$$
(3.23)

A/ Barre plate (type I)

B/Barre ronde (type II)

FIGURE 3.39 – A/ Barre plate (type I) - B/ Barre ronde (type II)

Pour la flexion et la torsion arbres de révolution à changement brusque de section, on obtient des résultats plus précis en utilisant la formule suivante :

$$k_c = 1 + \frac{1}{\sqrt{A(\rho/t) + B(1 + (\rho/a))^2 + C(\rho/t)^n d/D}}$$
(3.24)

où a est la demi-largeur de la section nette, t est la profondeur de l'entaille, ρ est est le rayon de l'entaille à la racine, et A, B, C sont des constantes définies au Tableau 3.2 :

Ces formules sont assez lourdes à manipuler. C'est pourquoi il est courant d'utiliser des abaques telles que celles tirées de l'ouvrage de Peterson [15] qui proposent le coefficient k_c pour des types d'accident géométrique couramment rencontrés en construction de machine. On donne à titre exemplatif quelques abaques abondamment utilisées lors des calculs de la vie courante : les épaulements (changement de section) dans des arbres de section circulaire (Fig. 3.40), les arbres présentant une gorge de décharge (Fig. 3.41), les arbres percés d'un trou (Fig. 3.42), les changements brusques de section droite dans les barres plates (Fig. 3.43), les barres plates entaillées (Fig. 3.44), les tôles rectangulaires percées d'un trou centré (Fig. 3.45).

Mode de	Forme	Entaille I		Entaille II			
sollicitation		А	В	А	В	С	n
Traction	Plate	0,25	0,62	0,60	1,50	-	-
	Ronde	0,25	1,00	0,77	2,10	-	-
Flexion	Plate	0,25	1,40	0,60	4,00		
	Ronde	0,25	1,80	0,77	3,80	0,20	3,00
Torsion	Ronde	1,00	7,00	3,40	13,0	1,00	2,00
Cisaillement	Ronde	1,00	6,70	_	-	-	-

TABLE 3.2 – Coefficients pour les formules de Peterson (3.23) et (3.24)

Il y a un autre cas de figure courant qui appelle quelques commentaires : ce sont les collets. Les figures 61, 62, 63 donnent les coefficients théoriques de concentration de contraintes our des barres plates soumises à la flexion pour différentes valeurs de L/d.

Pour les arbres munis de collets, on n'a pas d'abaque donnant directement le coefficient de concentration de contrainte dans le cas de collet sur des arbres de section circulaire. Toutefois, en pratique il est suffisant de choisir l'abaque correspondant au rapport L/d le plus proche de celui du collet étudié pour une barre plate soumise à la flexion et ensuite de supposer que l'effet de discontinuité pour les arbres de section circulaire est le même que pour les barres plates. Cela veut dire que si on note par

- k_{tL} : le facteur pour le collet étudié de longueur L pour avec D/d donné sur un **arbre**;
- k_{∞} : le facteur correspondant un collet de grande longueur, c'est-à-dire un **arbre présenant un épaulement**;
- k_{tb} : le facteur correspondant à une **barre plate** de longeur L et de rapport D/d donné;
- $k_{t\infty}$: le facteur correspondant à la **barre plate** de longueur infinie et de rapport D/d donné.

alors on suppose que le coefficient de concentration de contrainte pour les arbres suit le même rapport que celui des barres plates :

$$\frac{k_{tL} - 1}{k_{\infty} - 1} = \frac{k_{tb} - 1}{k_{t\infty} - 1}$$
(3.25)

. On en tire le coefficient de concentration de contrainte pour les arbres circulaires avec un collet de longueur L et un rapportD/d:

$$k_{tL} = 1 + (k_{\infty} - 1) \frac{k_{tb} - 1}{k_{t\infty} - 1}$$
(3.26)

Pour la torsion, les choses sont plus simples, car on observe expérimentalement que le coefficient de concentration de contrainte lors d'une sollicitation en torsion est le même qu'il s'agissait d'un collet de largeur infinie ou d'un collet de largeur finie de même dimension.

Détermination de k_c pour des entailles non calculables

Malheureusement, la méthode exposée ci-dessus souffre d'une sévère limitation. En réalité, pour un grand nombre d'entailles de la pratique, on est dans l'impossibilité de calculer directement, soit le coefficient concentration de contrainte, soit le gradient, soit les deux. Parmi celles-ci, il faut classer :

- Les entailles vives, pour lesquelles on ne connaît pas d'expression analytique du coefficient de concentration de contrainte.
- Une série d'entailles pour lesquelles les données sont insuffisantes, ou dont le rayon à fond d'entaille est mal défini. C'est notamment le cas des rainures de clavettes, des cannelures, des cannelures sur arbre, etc.
- Les assemblages frettés, dans lesquels l'état de contrainte est complexe et n'est nullement régi par un quelconque rayon.

Ces entailles, que nous appellerons non calculables, sont malheureusement parmi les plus courantes. Elles ne peuvent être traitées qu'à partir de l'expérience et c'est là que gît la difficulté, car les résultats expérimentaux répertoriés dans la littérature sont extrêmement peu nombreux et se limitent souvent à un seul diamètre. C eci rend ces résultats peu exploitables, en raison de l'effet d'échelle qui peut être très marqué.

Le tableau 3.2.4 fournit en outre un ordre de grandeur des facteurs d'entaille k_f pour les accidents géométriques les plus courants, en fonction de la nuance d'acier choisie pour élaborer la pièce. Ce tableau est dressé en adoptant implicitement

$$k_{\sigma/\tau} = 1 + q (k_{s/t} - 1)$$

avec k_{σ} ou k_{τ} le facteur d'entaille k_f adéquat, q, l'indice de sensibilité à l'entaille, et k_s et k_t les coefficients théoriques de concentration de tension de Peterson. Les facteurs d'entaille k_{σ} et k_{τ} multiplient la tension moyenne calculée à fond d'entaille.

En conclusion, on dispose maintenant d'une limite d'endurance réduite valant $b_1 b_2 R^{\pm}$. Si σ_a est la contrainte nominale alternée de service ($\bar{\sigma} = 0$), k_{σ} est le facteur d'entaille, on en déduit la valeur du *coefficient de sécurité* :

$$K_{\sigma} = \frac{b_1 \, b_2 R_{\pm}}{k_{\sigma} \, \sigma_a}$$

FIGURE 3.40 – Arbre présentant un changement de section (épaulement). (a) Sollicitation de flexion. (b) Sollicitation en traction-compression. (c) Sollicitation en torsion

3.2.5 Pièces soumises à des sollicitations pulsatoires

On considère la loi linéaire de Soderberg qui lie les sollicitations de rupture $\bar{\sigma}$ et σ_a . La loi est représentée à la Figure 3.46. L'ordonnée a été modifiée

FIGURE 3.41 – Arbre présentant une gorge de décharge. (a) Sollicitation de flexion. (b) Sollicitation en traction-compression. (c) Sollicitation en torsion

pour tenir compte des différents coefficients $b_1 b_2 R^{\pm}/k_{\sigma}$ introduits plus haut. L'abscisse a été multipliée par un coefficient ψ tenant compte du fait que l'on

FIGURE 3.42 – Arbre percé d'un trou radial

peut éventuellement tolérer que le moment élastique M_e soit dépassé d'une quantité telle que la zone plastifiée reste faible et que la flèche résiduelle de flexion reste très petite comparativement à la flèche élastique. Ces conditions sont remplies si l'on adopte un moment critique tel que l'élongation permanente dans la fibre la plus sollicitée soit au plus égale à 7,5% de la déformation élastique ε_e . Pratiquement on multiplie le module de flexion par $\psi = M_c/M_e$. De manière évidente on admet toujours $\psi = 1$ en tractioncompression comptenu de la distribition uniforme des contraintes dans la section droite dans ce cas. Pour la flexion, les coefficients ψ suggérés sont fournis à la Table 3.4.

Posons

$$R_{\phi} = \frac{b_1 \, b_2 R^{\pm}}{k_{\sigma}} \, R_{\pm}$$

la limite réduite en flexion et

$$R_{\phi}^{''} = \frac{b_1 \, b_2 R_{\pm}}{k_{\tau}} \, R_{\pm}^{''}$$

la limite réduite en torsion.

Le point D représente l'état des sollicitations réelles caractérisées par l'état de contrainte σ'_a et $\bar{\sigma}'$. Le point D est intérieur au triangle OAB. Il lui corres-

Forme de l'entaille	Matière	$oldsymbol{k}_{\sigma}$	$oldsymbol{k}_{ au}$
Gorge de dégagement	St 37-60	1.5 - 2.2	1.3 - 1.8
circulaire			
Saignée pour jong d'arrêt	St 37-60	2.5 - 3.0	2.5 - 3.0
Epaulement raccordé	St 37-60	1.5 - 2.0	1.3 - 1.8
Rainure de cale	St 37-60	1.7	1.6
(bouts ronds)	$R_0 > 600 \ N/mm^2$	2.0	1.8
Rainure de cale	St 37-60	1.5	1.4
ordinaire	$R_0 > 600 \ N/mm^2$	1.6	1.5
Rainure de cale de type	St 30 - 60	2.0 - 3.0	2.0 - 3.0
Woodruff (demi-lune)			
Arbres cannelés	St 37 - 60	-	2.0 - 2.5
Frettage sans précaution	St 37 - 60	2.0	1.5
spéciale			
Trou radial	St 37 - 60	1.4 - 1.7	1.4 - 1.7
dans un arbre			

TABLE 3.3 – Valeurs approchées des facteurs d'entaille dans le cas de géométries non calculables

Section	Carré plein	Circulaire	Rectangulaire	Tube creux
ψ	1,425	1,3	1,2	1,1

TABLE 3.4 – Valeur des coefficients ψ en flexion pour différentes sections droites

FIGURE 3.43 – Changement de section dans les barres plates. (a) Flexion. (b) Traction-compression

pond donc un coefficient de sécurité K_{σ} . La Soderberg Safety Line (SSL) qui caractérise l'état de sollicitation est la droite parallèle à la Soderberg Failure passant par le point D.

Compte tenu des nouvelles abscisses et ordonnées à l'origine, le coefficient de sécurité suivant Soderberg vaut à présent :

$$K_{\sigma} = \frac{\psi R_e}{\sigma_{eq}} = \frac{OC}{OD}$$

FIGURE 3.44 – Barre plate entaillée. (a) Flexion. (b) Traction-compression

Les triangles E'DA et OBA sont semblables. En conséquence on peut écrire :

$$\frac{E'D}{OB} = \frac{E'A'}{OA}$$

 soit

$$\frac{\sigma_a'}{R_\phi} = \frac{\sigma_{eq} - \bar{\sigma}'}{\psi R_e}$$

d'où

FIGURE 3.45 – Tôle rectangulaire percée d'un trou centré. (a) Flexion. (b) Traction-compression

$$\frac{\sigma_{eq}}{\psi R_e} = \frac{\sigma'_a}{R_\phi} + \frac{\bar{\sigma}'}{\psi R_e} = \frac{1}{K_\sigma}$$

On obtient en définitive :

$$\boxed{\frac{1}{K_{\sigma}} = \frac{k_{\sigma} \,\sigma'_a}{b_1 \,b_2 \,R_{\pm}} + \frac{\bar{\sigma}'}{\psi \,R_e}}$$
(3.27)

FIGURE 3.46 – Diagramme de Soderberg pour le calcul du coefficient de sécurité pour un état de sollicitation σ'_a et $\bar{\sigma}'$

On utilise souvent la même loi lorsque la compression est prédominante. En réalité, en compression, $\bar{\sigma}$ n'a pas ou peu d'influence du fait que la compression entrave la progression des fissures. On pourrait donc dans ce cas se contenter de :

$$\frac{1}{K_{\sigma}} = \frac{k_{\sigma} \sigma_a'}{b_1 b_2 R_{\pm}}$$
(3.28)

Dans le cas d'une torsion pulsatoire, on écrirait semblablement :

$$\frac{1}{K_{\tau}} = \frac{k_{\tau} \tau_a'}{b_1 \, b_2 \, R_{\pm}''} + \frac{\bar{\tau}_m'}{\psi \, R_e''}$$
(3.29)

3.2.6 Pièces lisses soumises à des sollicitations composées alternées

Sur base de résultats expérimentaux on a constaté que pour l'acier et l'acier coulé, les limites d'endurance en torsion alternée R_{\pm}'' et en flexion alternée R_{\pm} vérifient la relation (voir Figure 3.47) :

$$R_{\pm}^{''} = 0,58 R_{\pm} \simeq \frac{1}{\sqrt{3}} R_{\pm}$$
 (3.30)

Pour des pièces en acier au carbone et en acier au Ni-Cr, soumises à torsion et flexion alternées agissant en phase, Goush et Pollard [9, 10] proposent un critère empirique de forme elliptique basé sur l'expérience comme illustré à la Figure 3.47 :

$$\left(\frac{\sigma_a}{R_{\pm}}\right)^2 + \left(\frac{\tau_a}{R_{\pm}''}\right)^2 = 1 \tag{3.31}$$

FIGURE 3.47 – Critère elliptique de rupture à la fatigue pour un état de sollicitations composées σ'_a et $\bar{\sigma}'$ [9, 13]

Cela semble indiquer que le critère de la contrainte tangentielle octaédrale est applicable aux sollicitations alternées agissant en phase dans le cas des aciers et matériaux ductiles. En effet, les relations (3.30) et (3.31) combinées conduiraient à

$$\sqrt{\sigma_a^2 + 3\,\tau_a^2} = R_{\pm} \tag{3.32}$$

qui est exactement l'expression du critère de contrainte de Von Mises pour un état plan de contrainte.

Dans le cas de sollicitations pulsatoires quelconques, des essais développés par Gough [10] ont pu montrer que la loi liant les contraintes limites de flexion et de torsion restait elliptique et avait pour équation :

$$\left(\frac{\sigma_a}{R_{\pi}}\right)^2 + \left(\frac{\tau_a}{R_{\pi}''}\right)^2 = 1 \tag{3.33}$$

avec cette différence toutefois que les contraintes R_{π} et R''_{π} correspondent à présent aux limites d'endurance calculées respectivement pour chacune des contraintes moyennes $\bar{\sigma}$ et $\bar{\tau}$, généralement indépendantes. Il n'y a donc plus cette fois de liaison directe entre les dénominateurs des deux termes du premier membre de (3.33).

3.2.7 Pièces entaillées soumises à des sollicitations pulsatoires en phase

De multiples essais en laboratoire ont prouvé qu'il était acceptable d'extrapoler les résultats de Gough et Pollard [9, 10] obtenus sur des pièces lisses au cas des pièces entaillées à condition d'adopter la droite de Sorderberg relative à la pièce réelle.

L'écriture de la formule fondamentale n'est pas modifiée mais les limites d'endurance R_{π} et R''_{π} sont cette fois relatives à la pièce réelle (Voir Figure 3.48).

La pièce réelle travaille donc en sécurité aussi longtemps que la relation suivante est vérifiée :

$$\left(\frac{\sigma_a}{R_{\pi}}\right)^2 + \left(\frac{\tau_a}{R_{\pi}''}\right)^2 \le 1 \tag{3.34}$$

avec corrélativement les valeurs R_{π} et R''_{π} issue de l'expression de la droite de Soderberg.

$$R_{\pi} = R_{\phi} - C\,\bar{\sigma} \tag{3.35}$$

avec

$$R_{\pi} = R_{\phi} - C \bar{\sigma} \qquad R_{\phi} = \frac{b_1 b_2 R_{\pm}}{k_{\sigma}} \qquad (3.36)$$
$$C = \frac{R_{\phi}}{\psi R_e}$$

$$R_{\pi}^{''} = R_{\phi}^{''} - C^{''} \bar{\tau} \qquad R_{\phi}^{''} = \frac{b_1 \, b_2 \, R_{\pm}^{''}}{k_{\tau}} \qquad (3.37)$$
$$C^{''} = \frac{R_{\phi}^{''}}{\psi \, R_e^{''}}$$

Il s'en suit que si la valeur du premier membre de (3.34) est unitaire, les tensions de travail σ_a et τ_a créent un état de contrainte limite. Si ce premier membre reste inférieur à l'unité, on dit que le système travaille en sécurité

FIGURE 3.48 – Calcul du coefficient de sécurité pour une pièce réelle soumise à un état de sollicitation composée σ'_a et $\bar{\sigma}'$

et que le régime de sollicitation est caractérisé par un coefficient de sécurité K :

$$\left(\frac{\sigma_a}{R_{\pi}}\right)^2 + \left(\frac{\tau_a}{R_{\pi}''}\right)^2 = \frac{1}{K^2} \le 1$$
(3.38)

Evaluons maintenant chacun des termes de l'expression (3.34). Examinons la Figure 3.48. La similitude des triangles EDA' et ED'A permet d'écrire :

$$\frac{\sigma_a}{R_\pi} = \frac{\sigma_{eq} - \bar{\sigma}}{\psi R_e - \bar{\sigma}} \le \frac{\sigma_{eq}}{\psi R_e} = \frac{1}{K_\sigma}$$
(3.39)

On écrirait de même pour ce qui concerne les contraintes de cisaillement :

$$\frac{\tau_a}{R''_{\pi}} = \frac{\tau_{eq} - \bar{\tau}}{\psi_c R''_e - \bar{\tau}} \le \frac{\tau_{eq}}{\psi_c R''_e} = \frac{1}{K_{\tau}}$$
(3.40)

Il n'est pas facile d'obtenir facilement une valeur des coefficients de sécurité partiels K_{σ} et K_{τ} . Dès lors au stade de l'avant projet, on préfère déterminer une valeur approchée du coefficient de sécurité K pour autant que celui-ci soit une estimation sécuritaire [5]. Il vient que le coefficient de sécurité Ksera calculé en remplaçant respectivement σ_a/R_{π} et τ_a/R''_{π} par leurs valeurs estimées $1/K_{\sigma}$ et $1/K_{\tau}$ à partir des équations (3.39) et (3.40). Puisque l'on surestime ainsi la valeur de chacun des deux termes, la sécurité globale s'en trouve renforcée d'autant. Cela aboutira à surdimensionner les pièces. Un dimensionnement plus fin pourra être réalisé avec une analyse détaillée à un stade plus avancé du projet. En définitive on convient de calculer la sécurité globale à l'aide des sécurités partielles K_{σ} (3.38) et K_{τ} (3.39) en les introduisant directement dans la formule suivante découlant de (3.38) :

$$\frac{1}{K} = \sqrt{\frac{1}{K_{\sigma}^2} + \frac{1}{K_{\tau}^2}} = \sqrt{\frac{K_{\sigma}^2 K_{\tau}^2}{K_{\sigma}^2 + K_{\tau}^2}} \qquad K = \frac{K_{\sigma} K_{\tau}}{\sqrt{K_{\sigma}^2 + K_{\tau}^2}}$$
(3.41)

Plus explicitement en introduisant les valeurs issues des équations (3.39) et (3.40), il vient :

$$\frac{1}{K} = \sqrt{\left(\frac{\sigma_a \, k_\sigma}{b_1 b_2 R_{\pm}} + \frac{\bar{\sigma}}{\psi R_e}\right)^2 + \left(\frac{\tau_a \, k_\tau}{b_1 b_2 R_{\pm}''} + \frac{\bar{\tau}}{\psi_c R_e''}\right)^2} \tag{3.42}$$

On insiste toutefois sur le fait que le coefficient de sécurité global ainsi calculé est légèrement sous-estimé et que la méthode travaille en sécurité.

3.3 DIMENSIONNEMENT POUR UNE DU-REE DE VIE LIMITEE

Ce problème devient de plus en plus important. Il apparaît en effet que certaines pièces devant subir un faible nombre de cycles seraient inutilement lourdes et surdimensionnées si on adoptait la limite d'endurance conventionnelle.

Il paraît en outre plus judicieux dans certains cas d'espèce, de concevoir les pièces pour une durée limitée, quitte à prévoir systématiquement leur remplacement périodique.

En outre certains métaux non ferreux ne possèdent pas de limite d'endurance. Pour ceux-ci, il est nécessaire de dimensionner des pièces faites avec ces matériaux pour une durée de vie limitée.

On remplace dans la méthode ci-dessus la limite d'endurance par la contrainte de rupture par fatigue $R_{\phi}(N)$ après N cycles.

Comme 1a courbe Wöhler n'est généralement pas connue, on adopte l'allure suivante présentée à la Figure 3.49.

Cette droite a pour équation :

$$R_{\phi}(N) = \psi R_E - \frac{1}{6} \left(\psi R_e - \frac{b_1 b_2 R_{\pm}}{k_{\sigma}} \right) \log_{10} N \qquad (3.43)$$

FIGURE 3.49 – Courbe de Wöhler approchée pour le dimensionnement pour une durée de vie limité

Ceci nous impose de tenir compte d'une troisième dimension dans le diagramme de Soderberg, à savoir le nombre de cycles (Figure 3.50)

FIGURE 3.50 – Diagramme de Soderberg pour dimensionner à moins de 10^6 cycles (flexion)

On en déduit l'expression des sécurités partielles :

$$\frac{1}{K_{\sigma,N}} = \frac{\bar{\sigma}}{\psi R_e} + \frac{\sigma_a}{\psi R_e - \frac{1}{6} (\psi R_e - R_\phi) \log_{10} N}$$
(3.44)

avec

$$R_{\phi} = \frac{b_1 b_2 R_{\pm}}{k_{\sigma}}$$

et en procédant de même pour la torsion :

$$\frac{1}{K_{\tau,N}} = \frac{\bar{\tau}}{\psi R''_e} + \frac{\tau_a}{\psi_c R''_e - \frac{1}{6} \left(\psi_c R''_e - R''_\phi\right) \log_{10} N}$$
(3.45)

avec

$$R_{\phi}^{''} = \frac{b_1 b_2 R_{\pm}^{''}}{k_{\tau}}$$

Si on s'impose une durée de vie limitée inférieure à 10^6 cycles, les relations précédentes permettent un calcul immédiat de $K_{\sigma,N}$ et $K_{\tau,N}$. On en déduit le coefficient de sécurité global K_N .

Par contre, si on s'impose une sécurité K_N totale et qu'on demande le nombre de cycles qui y correspond, le mieux est de procéder par itérations successives en introduisant une série de différentes valeurs de N dans chacune des relations en $K_{\sigma N}$ et $K_{\tau N}$. La bonne valeur de N conduit aux sécurités partielles qui, combinées, satisfont à la condition imposée sur K_N .

Dans le cas où un type seulement de sollicitations intervient dans la mise en charge, on pourra toutefois utiliser la formule suivante, qui fournit le nombre de cycles pour lequel la rupture se produira connaissant σ_a et $\bar{\sigma}$ (respectivement τ_a et $\bar{\tau}$).

$$\log_{10} N = \frac{6(\psi R_e - \sigma_{max})}{(\psi R_e - \bar{\sigma})(1 - \frac{R_{\phi}}{\psi R_e})}$$
(3.46)

avec

$$\sigma_{max} = \bar{\sigma} + \sigma_a \qquad R_\phi = \frac{b_1 b_2 R_\pm}{k_\sigma}$$

Remarquons que nous avons utilisé le facteur d'entaille donné pour une durée de vie infinie alors que l'expérience montre que le facteur d'entaille pour une durée de vie finie est généralement plus faible. Pour un acier, les courbes de Wöhler correspondant aux pièces lisses et entaillées présentent l'allure illustrée à la Figure 3.51. L'intersection des deux tracés intervient pour 10^4 cycles, auquel point $k_f = 1$, dans le cas de l'acier 1050 HT (normes AISI). En général, ce point se situe vers 10^3 cycles pour 1a plupart des aciers.

Une relation expérimentale mais déjà satisfaisante pour l'acier est :

$$(k_f)_N = \frac{N^{1/3(\log_{10} k_f)}}{k_f} \tag{3.47}$$

116

FIGURE 3.51 – Variation du facteur d'entaille avec la durée de vie

où $(k_f)_N$ est le facteur d'entaille pour une durée de vie limitée inférieure à 10^6 cycles.

3.4 CAS DE PIECES REELLES SOUMISES A DIVERS NIVEAUX DE CONTRAINTE

3.4.1 Chargement de la pièce par un série de niveaux de sollicitations constants

Supposons que la pièce soit chargée par une série de niveaux de sollicitations constants caractérisés par l'état de contrainte $\sigma_a^{(i)}$, $\bar{\sigma}^{(i)}$, $\tau_a^{(i)}$, $\bar{\tau}^{(i)}$. La pièce subit effectivement ce niveau de sollicitation pendant n_i cycles.

On admettra le critère de Palmgren Miner. Selon la théorie de Miner, le dommage à chaque niveau de sollicitation constant s'exprime par la quantité :

$$D_i = \frac{n_i}{N_i} \tag{3.48}$$

où N_i est la durée de vie de la pièce (état de sécurité unitaire) si elle était sollicitée en permanence par l'état de contrainte cyclique $\sigma_a^{(i)}$, $\bar{\sigma}^{(i)}$, $\tau_a^{(i)}$, $\bar{\tau}^{(i)}$.

Le dommage global est alors donné par :

$$D = \sum_{i=1}^{K} D_i = \sum_{i=1}^{K} \frac{n_i}{N_i}$$
(3.49)

On vérifiera que le dommage reste effectivement inférieur à l'unité.

$$D = \sum_{i=1}^{K} \frac{n_i}{N_i} = \frac{1}{K} = \le 1$$
(3.50)

3.5 VALEUR DU COEFFICIENT DE SE-CURITE

Pour le dimensionnement des pièces mécaniques en construction des machines, on adopte généralement un coefficient de sécurité K de 1,5 à 2. On peut descendre dans certains cas jusqu'à 1,25 si nécessaire mais il importe alors de réaliser des essais de fatigue sur les pièces en vraie grandeur.

A défaut de renseignements plus précis, la norme DIN propose d'utiliser :

- $\mathbf{K} = \mathbf{2}$ lorsque la charge maximale est appliquée 100% du temps (cas des machines rotatives par exemple).
- K = 1,5 lorsque la charge maximale est appliquée 50% du temps (cas des machines-outils généralement).
- K = 1,25 lorsque la charge maximale est appliquée pendant 25% du temps seulement (cas type des engins de levage et de manutention).

Précisons que ce coefficient de sécurité global doit nous prémunir contre différents facteurs d'incertitude à savoir :

- 1. La limite d'endurance, quand elle est connue, est une valeur nominale correspondant à une probabilité de rupture de 50%, les essais présentant toujours une certaine dispersion.
- 2. Les variations possibles de la charge, la corrosion, les contraintes résiduelles...

Remarquons par ailleurs que l'on se met généralement du côté de la sécurité à plusieurs reprises lors de l'estimation du coefficient K:

— On se met du côté de la sécurité K lorsque on adopte le diagramme linéaire de Soderberg en lieu et place de celui de Goodman ou de Gerber.

3.6. AMELIORATION DE L'ENDURANCE

- Dans le cas de concentrations de contraintes superposées, on se place en sécurité en adoptant le produit des coefficients de concentration de contraintes des deux discontinuités. En réalité, le coefficient global est plus faible (parfois 20% en moins).
- Enfin on s'est placé du côté de la sécurité lorsque l'on fait l'estimation (3.42) pour calculer le coefficient de sécurité dans le cas de sollicitations pulsatoires en phase.

3.6 AMELIORATION DE L'ENDURANCE

Malgré le grand nombre de recherches effectuées dans le domaine de la fatigue des métaux, il se produit encore très régulièrement des ruptures de pièces en fatigue. La plupart de celles-ci ont des causes banales et pourraient être évitées par la connaissance des règles élémentaires concernant le design à la fatigue.

Ainsi lors de la phase de conception, on veillera tout spécialement à éviter les concentrations de tension et à assurer un écoulement aussi réparti et régulier que possible des lignes de forces (congés généreux, etc.), une amélioration du tracé étant généralement plus rentable que le choix d'un acier à meilleure limite d'endurance. On se souviendra aussi que les aciers à haute résistance présentent une forte sensibilité à l'entaille.

La Figure 3.52 donne quelques exemples d'utilisation de gorges de décharge.

FIGURE 3.52 – Exemples de tracés corrects pour gorges de décharge

Des précautions toutes spéciales devront être prises dans la **localisation** des trous dans une pièce. Une poutre droite soumise à flexion souffre fort peu de l'existence d'un trou à proximité de l'axe neutre. Dans le cas de poutres courbes soumises à flexion, il ne faut pas perdre de vue qu'il y a déplacement de l'axe neutre. Un trou situé à hauteur de l'axe géométrique pourrait occasionner une rupture par fatigue. Les collets de largeur faible produisent une très faible concentration de contrainte (Figure 3.53).

FIGURE 3.53 – Géométrie de collets

La Figure 3.54 montre quelques améliorations dans la conception des vilebrequins d'un moteur à combustion interne.

a) Vilebrequin normal: forte concentration des tensions.

 b) Vilebrequin foré, le flux de force est moins compact.

- Représentation schématique du flux de force dans divers vilebrequins.

FIGURE 3.54 – Géométrie de vilebrequins

3.6. AMELIORATION DE L'ENDURANCE

Dans le maneton d'un vilebrequin comportant un trou de graissage, la contrainte peut être quadruplée au droit du trou de sorte que celui-ci est souvent à l'origine d'une rupture par fatigue. Il est conseillé de le disposer assez loin du raccordement au flasque. Les orifices des trous doivent être arrondis avec un rayon aussi grand que possible et soigneusement polis. Comme indiqué aux Figures 3.54 et 3.55, on a pratiqué avec succès des gorges dans les flasques qui constituent en fait des entailles de décharge.

. — Vilebrequin avec gorge et avec recouvrement des manetons et des tourillons, destiné à un gros moteur Diesel-Sulzer marin de construction légère.

FIGURE 3.55 – Gorges de décharge dans les vilebrequins

La complexité du phénomène rend le calcul des pièces souvent difficile et hasardeux. Dans certains cas critiques, on est même amené à recourir à des essais simulant au mieux les conditions réelles de fonctionnement. Une autre méthode consiste à surveiller la pièce en service et à étudier la naissance et le développement des fissures. Moyennant les précautions nécessaires pour éviter les accidents, cette méthode est excellente et peu coûteuse et donnera un enseignement de valeur car les sollicitations sont celles de la réalité. D'autre part l'observation du trajet de la fissure et de la cassure peut donner nombre de renseignements intéressants. Observons par exemple le faciès de l'arbre après rupture de la Figure 3.56. Deux trous à la surface sont les extrémités d'une rainure où la rupture par fatigue a démarré. La rupture a progressé graduellement depuis ces deux trous et se sont dirigées vers le centre. La surface qui a subi la rupture en premier lieu a frotté et est devenue presque lisse sous l'action de la charge. La rupture finale est survenue dans la partie où l'on aperçoit une rugosité importante aux alentours du diamètre central. On observe des lignes de progression presque symétriques progressant depuis les rainures de cale vers le centre.

On sait en effet que la fissuration suit un trajet perpendiculaire à la direction de la plus forte tension de traction. L'étude de ce trajet permet de décrire le système de sollicitation qui a provoqué la fissure. On peut ainsi détecter

FIGURE 3.56 – Faciès de rupture

des tensions parasites éventuellement non prises en considération lors du projet. L'observation de la fracture peut elle aussi donner un certain nombre de renseignements tels que le niveau de contrainte, le mode de sollicitation (Figure 3.57). Par exemple Une fracture en hélice indique que l'arbre a subi de la torsion alternée comme l'illustre la Figure 3.58.

	Faible concentrateur local		Faible concentrateur circonférentiel		Concentrateur circonféren- tiel important	
Type de sollicitation	surcharge cyclique modérée	surcharge cyclique importante	surcharge cyclique modérée	surcharge cyclique importante	surcharge cyclique modérée	surcharge cyclique importante
Traction-compression cyclique						
Flexion simple cyclique						
Flexion double cyclique						
Flexion symétrique en rotation					-	

FIGURE 3.57 – Schématisation des cassures de fatigue

L'exécution de la pièce doit, elle aussi, être rigoureusement surveillée. Un

FIGURE 3.58 – Cassure en hélice à 45°

point de soudure déposé malencontreusement en un endroit fort sollicité, un trou qui n'a pas été repassé à l'alésoir, un poinçon mal placé, un trou foré par erreur et rempli de soudure sont autant d'amorces de rupture possicles.

Dans bien des cas, on peut aussi incriminer une utilisation inadéquate du matériel (matériel de levage par exemple).

L'introduction d'entailles microgéométriques et d'hétérogénéités structurales (inclusions) peut également être un facteur déterminant de la vie d'un organe mécanique. Ces entailles peuvent provenir aussi bien de l'élaboration du métal que de l'usinage ou des traitements mécaniques et thermiques, de chocs accidentels. En fonctionnement, une surcharge thermique, l'exposition à de la corrosion ou un défaut de lubrification peuvent être à l'origine de telles entailles.

On notera que de nombreux traitements de surface aussi bien mécaniques que métallurgiques sont actuellement utilisés pour améliorer la tenue en fatigue. Citons le galetage, le grenaillage qui ont pour but de créer de fortes contraintes résiduelles, la cémentation et la nitruration visant à créer une couche superficielle dure et comprimée. Le paragraphe suivant est destiné à fournir quelques informations sur ce sujet.

3.7 TRAITEMENTS DE SURFACE

Compte tenu des méthodes courantes de mise à forme, on sait que la surface extérieure d'une pièce de machine est la zone caractérisée par la plus forte densité de défauts de toute sorte.

La fatigue constitue d'autre part un phénomène de *surface* auquel est lié un phénomène de *tension*.

Il s'en suit que le point origine de la propagation des fissures est généralement situé à la peau de la pièce, en un endroit où des contraintes très supportables en temps normal, voient leur action considérablement amplifiée, de par l'effet d'entaille qu'un défaut micro-localisé peut produire. En outre, s'il apparaît que l'application d'une tension de traction variable accélère l'endommagement de la pièce. La compression a par contre un effet assez bénéfique au contraire. Ceci nous indique clairement qu'un gain sérieux peut être obtenu en créant des contraintes résiduelles de compression aux endroits critiques. C'est ce qui est exploité de différentes façons :

A. Traitement mécanique

- 1. Surcharge (overstressing)
- 2. Dressage et formage à froid
- 3. Martelage grenaillage
- 4. Galetage (surface rolling)

B. Traitements thermiques

- 1. Trempe superficielle
- 2. Carburation
- 3. Nitruration

Certaines de ces méthodes sont souvent combinées

3.7.1 Traitements mécaniques - plastification locale à froid

Overstressing

Cette méthode est couramment utilisée pour les ressorts de suspension d'automobiles. Le schéma des opérations est représenté à la Figure 3.59. Cette méthode ne peut s'appliquer que lorsque la charge dans une direction est nettement plus grande que dans l'autre. Elle n'aurait aucun effet dans le cas de sollicitation alternée. Elle est aussi utilisée pour les barres de torsion, dans l'assemblage de roues de chemin de fer et de disques de turbine (autofrettage). L'utilisation de l'overstressing est limitée par la ductilité des zones soumises à forte contrainte (fond d'entaille).

3.7. TRAITEMENTS DE SURFACE

Dressage et formage à froid

Les contraintes résiduelles créées par le dressage et le formage ont la même distribution dans la section que celles créées par l'overstressing et peuvent avoir un effet bénéfique si la charge de formage a le même sens que la charge de service, ce qui n'est pas toujours le cas. Un exemple est donné à la Figure 3.60.

When properly oriented with respect to service loads, residual stresses increase fatigue durability.

FIGURE 3.59 – Traitement par overstressing

Horger et Lipson [11] ont étudié cet effet sur des axes de ponts arrières de voiture. Ils ont constaté une réduction de 25% de la limite de fatigue pour des axes dressés à froid $(14 da N/mm^2 \rightarrow 9, 1 da N/mm^2)$. La résistance à la fatigue d'arbres dressés à froid mais utilisant la bonne distribution de contraintes résiduelles (grenaillage) peut atteindre plus de $30 da N/mm^2$ (Voir Figure 3.61).

Direction of forming should be the same as direction of loading.

FIGURE 3.60 – Traitement par overstressing. Influence du sens de la surcharge

Straightening decreases the fatigue life of axle shafts; peening increases it.

FIGURE 3.61 – Influence du grenaillage ($1 psi \approx 7 N/mm^2$)

Martelage - Grenaillage

Ces méthodes produisent une couche superficielle en précontrainte de conpression résistant particulièrement bien aux fissures. Le martelage se fait à l'aide d'un marteau pneumatique. Quand l'outil est sphérique, la profon-

3.7. TRAITEMENTS DE SURFACE

deur de la zone comprimée est à peu près égale au diamètre de l'empreinte et la plus grande tension de compression vaut à peu près la moitié de la limite élastique.

Le grenaillage est effectué par projection à grande vitesse de petites particules sphériques. C'est la méthode la plus polyvalente parce qu'appliable à toutes les géométries. La taille des grains va de 0.2 à 4 mm de diamètre. Les vitesses sont de 30 à 60 m/s. La profondeur de la zone conprimée dépend de la vitesse et de la taille des grains et va de quelques centièmes de mm à quelques dixièmes. La contrainte maximum se produit légèrement en dessous de la surface. L'importance économique de ce procédé est qu'il permet, outre l'augmentation de charge, de réduire forternent le coût d'usinage et de finition. Un mauvais état de surface après grenaillage est meilleur du point de vue fatigue que le meilleur poli sans grenaillage (Figure 3.62).

FIGURE 3.62 – Influence du grenaillage après rectification

L'effet du grenaillage se mesure à l'aide d'éprouvettes de contrôle Almen, lames plates dont on mesure la courbure résiduelle après grenaillage dans 1es mêmes conditions que la pièce étudiée.

Surface Rolling (galetage)

Dans certains cas, le galetage peut être la technique la plus pratique spécialement pour les pièces de révolution lorsque de petits congés doivent être atteints ou lorsque la couche comprimée doit être importante, comme dans les axes de locomotive. Un dispositif utilisé est représenté à la Figure 3.63. Les rayons des rouleaux vont de 6 à 40 mm avec des pressions allant jusqu'à 10 tonnes. La profondeur de la région comprimée peut aller jusqu'à 12 mm.

FIGURE 3.63 – Galetage des axes de vilebrequin

3.7.2 Traitements thermiques

Trempe superficielle

La martensite, produite par trempe occupe plus de volume que l'acier qui lui a donné naissance. Cette dilatation a lieu lors du refroidissement à partir de $370^{\circ}C$. Sa dilatation linéaire est de l'ordre de 0,5%. A cette déformation biaxiale de 0,5% correspond une contrainte biaxiale de l'ordre de $140 \ kg/mm^2$. On voit que les contraintes résiduelles de trempe peuvent être énormes. Le revenu va réduire celles-ci au niveau souhaité.

La trempe superficielle produit à la surface une nette augmentation de la dureté et un pic de contraintes de compression, le coeur étant sous tension de traction (Figure 3.64).

L'exploitation correcte de cette distribution de contrainte a permis l'utilisa-

tion d'acier au carbone là où la pratique courante exigeait un acier allié très trempant.

FIGURE 3.64 – Influence du traitement thermique

Chauffage superficielle

Le même principe peut être utilisé en chauffant la surface de la pièce au chalumeau et en la refroidissant rapidement. Un exemple convaincant est présenté à la Figure 3.65.

Cémentation

La diffusion de carbone à haute température dans la couche superficielle accroît son volume. Lors du refroidissement, cette couche est transformée en martensite, le coeur étant mis sous tension de traction. Les tests montrent que ce procédé peut conduire à des améliorations de 200% de la résistance à la fatigue.

Les aciers alliés présentant une meilleure trempabilité peuvent être rendus suffisamment durs par trempe à l'huile et se déforment moins que les aciers au carbone où l'on utilise généralement la trempe à l'eau. Ils sont dès lors tout indiqués pour la cémentation, spécialement lorsqu'aucune opération de finition n'est nécessaire après traitement.

FIGURE 3.65 – Efficacité du traitement thermique

Nitruration

Le principe du traitement est semblable à celui de la cémentation. Les contraintes résiduelles sont toutefois plus élevées, ce qui entraîne une résistance à la fatigue encore supérieure. La nitruration présente également l'avantage d'une déformation négligeable après traitement : une forte trempe à ce stade n'est plus indispensable.

La combinaison d'une couche superficielle dure et d'une matière à coeur plus tendre ne suffit pas à expliquer le gain obtenu en fatigue. C'est la combinaison d'une couche dure et comprimée et d'une matière à coeur sous tension de traction qui est la clé de la résistance de pièces telles que les engrenages.

Outre l'augmentation de l'endurance, la création de contraintes résiduelles de compression garantit d'autres effets bénéfiques. La naissance et la propagation des fissures est en effet freinée, spécialement dans les cas de corrosion et de fretting corrosion. Elles permettent également l'utilisation d'aciers plus durs. Les aciers haute résistance présentent en effet une plus grande fragilité

3.7. TRAITEMENTS DE SURFACE

et une sensibilité à l'entaille plus importante. Ces deux effets peuvent être nettement atténués par l'existence des contraintes résiduelles de compression.

En définitive, Il est clair que le phénomène de fatigue est essentiellement complexe et qu'il importe toujours de ne négliger aucun facteur capable de l'influencer. En matière de fatigue, la connaissance la plus précise possible des propriétés du matériau utilisé et de sa structure revêt une importance primordiale. 132

Chapitre 4

ENGRENAGES

4.1 INTRODUCTION

4.1.1 Définitions

On appelle roues dentées des corps de révolution pourvus de dents par le contact desquelles un mouvement de rotation ou un couple peut être transmis d'un arbre moteur vers un arbre récepteur.

L'engrènement d'une roue dentée avec une crémaillère transforme la rotation de la roue en un déplacement de translation de la crémaillère et vice-versa.

Les roues menantes et menées, doivent être maintenues à un entraxe constant par un dispositif approprié. L'ensemble constitue *une paire engrenages* (c'està-dire deux roues dentées en prise).

4.1.2 Elements historiques

On trouve trace du développement des engrenages depuis l'antiquité en Chine et en Europe. Les engrenages sous leur forme actuelle résultent d'un processus d'évolution assez long. Quelques étapes importantes sont rappellées à la Figure 4.1.

Dans la Chine ancienne, le South Pointing Chariot composé d'un très vieux système d'engrenages permet de voyager à travers le désert de Gobi (Figure 4.1-A). Chez les Romains également, Vitruve discute le principe des engrenages à peigne (Figure 4.1-B).

On retrouve trace des engrenages au Moyen-Age : les systèmes de roues dentées en forme de peigne avec des dents en bois servent à transmettre le mouvement dans les moulins. (Figure 4.1-C)

(C)

(D)

FIGURE 4.1 – Quelques éléments d'histoire des engrenages : A/ South Pointing device en Chine. B/ Engrenages en forme des peigne et de lanterne au Moyen Age. C/ Etudes des engrenages homocinétique par Léonard de Vinci. D/ Développement des engrenages avec l'horlogerie à la Renaissance. E/ Essor des engrenages avec l'ère industrielle et la production mécanique. F/ Production moderne d'engrenages standardisés.

A la Renaissance, Léonard de Vinci, le grand peintre et ingénieur dessine de nombreux engrenages et s'intéresse à la question de l'engrènement homocinétique, c'est-à-dire la préservation d'un rapport constant entre les vitesses d'entrée et de sortie. (Figure 4.1-D)

C'est sous l'impulsion de la navigation et des besoins pour connaître le temps avec précision que l'horlogerie se développe. Les maîtres horlogers améliorent et développent la technique des engrenages homocinétiques. (Figure 4.1-E)

Avec l'ère industrielle, les engrenages prennent une ampleur que nous leur connaissons aujourd'hui. Les engrenages deviennent un élément très important de la mécanique des machines. On utilise l'acier et ils sont fabriqués en grande série. Les techniques de fabrication se perfectionnent. On normalise les dimensions des engrenages. (Figure 4.1-F)

4.1.3 Applications des engrenages en mécanique

Les engrenages constituent une vaste famille d'éléments de machine destinés à la transmission de puissance. Ils sont utilisés pour transmettre et convertir le couple et la vitesse dans une grande variété d'applications comme l'illustre quelques applications présentées à la Figure 4.2.

Parmi les autres éléments de transmission et de réduction disponibles, la famille des engrenages se distingue par les avantages et inconvénients suivants qui orientent leur applications privilégiées.

Avantages des engrenages

- Les engrenages maintiennent un rapport de vitesse constant au cours du temps, on parle d'une transmission de puissance homocinétique et cela quel que soit la charge.
- Transmission de puissance des plus petites aux plus grandes machines.
- Disposition quelconque des axes des roues, même si les axes parallèles restent la meilleure solution.
- Sécurité de service et durée de vie élevée.
- Entretien restreint (graissage).
- Compacité et encombrement faible.

Inconvénients

- Prix de revient relativement élevé (par rapport à d'autres solutions).
- Niveau sonore parfois gênant (dépend du type d'engrenages).
- Transmission rigide entre les arbres.
- Amortissement peu efficace des à-coups et des vibrations.
- Interchangeabilité limitée (même module nécessaire).

(D)

FIGURE 4.2 – Applications des engrenages des machines les plus grandes au plus petites : A/ Boite de vitesses pour éolinne. B/ Boîte de vitesses d'automobile. C/ Réducteurs pour moteurs électriques d'actionnement mécatronique. D/ Engrenages en Silicium pour un MEMS.

4.1.4 Nomenclature

Dans la suite on convient d'appeler :

(C)

Pignon : La plus petite des roues dentées. Elle est indicée 1.

Roue : la roue dentée de diamètre maximale. Elle est repérée par l'indice 2. Il s'agit d'une roue à denture extérieure.

Couronne : une roue à denture intérieure. Elle est également repérée par l'indice 2.

Crémaillère : un profil denté continu et plan.

4.1.5 Types d'engrenages

On distingue différents types d'engrenages comme illustrés à la Figure 4.3.

Engrenages à axes parallèles (Voir Figure 4.3-A). Les surfaces primitives sont des cylindres qui roulent sans glisser l'un sur l'autre.

Engrenages à axes concourants (voir Figure 4.3-B). Les surfaces primitives sont des troncs de cône qui roulent sans glisser l'un sur l'autre.

Engrenages à axes gauches (voir Figure 4.3-C). Les axes des roues sont gauches, c'est-à-dire ni concourants ni parallèles. Les surfaces primitives, théoriguement des hyperboloïdes, roulent et glissent l'une sur l'autre. Les surfaces utilisées en pratique sont des cylindres, des troncs de cônes ou des tores.

4.1.6 Représentation graphique

Les engrenages font l'objet d'une réprésentation graphique normalisée rappelée à la Figure 4.4 extraite de la Référence [4].

Types d'engrenages

FIGURE 4.3 – Type d'engrenages. A/ Engrenages à axes parallèles. B/ Engrenages à axes concourants. C/ Engrenages à axes Gauches

4.2 CINEMATIQUE DE L'ENGRENAGE A DENTURE DROITE

Considérons d'abord les engrenages à axes parallèles et à dentures droites (Figure 4.5). Les définitions fondamentales et la théorie de l'engrenement, le calcul de résistance seront développées sur ce type d'engrenages puis étendus aux engrenages d'autres natures.

FIGURE 4.4 – Représentation graphique normalisée

FIGURE 4.5 – Engrenages à axes parallèles et denture droite

4.2.1 Définitions fondamentales

Rapport de réduction

Deux roues dentées en prise se comportent comme si elles étaient fictivement constituées de deux cylindres de diamètres respectifs d_{01} et d_{02} (appelés **diamètres primitifs**) qui roulent sans glisser l'un sur l'autre (Voir Figure 4.6). La condition d'égalité des vitesses tangentielles s'écrit :

$$v_1 = \frac{\omega_1 \, d_{01}}{2} = v_2 = \frac{\omega_2 \, d_{02}}{2} \tag{4.1}$$

FIGURE 4.6 – Engrènement

où d_{01} et d_{02} sont les diamètres des cylindres équivalents qui roulent sans glisser. d_{01} et d_{02} sont appelé les **diamètres primitifs** des roues dentées. Il vient

$$\frac{d_{02}}{d_{01}} = \frac{\omega_1}{\omega_2} = i > 1 \tag{4.2}$$

avec le **le rapport de réduction i**. Le pignon ayant un diamètre inférieur à la roue, $d_{01} \leq d_{02}$, nous avons toujours par convention i > 1.

On notera enfin que ces formules restent valables pour un engrènement à denture intérieure à condition d'affecter d'un signe moins les quantités relatives à la roues soient les quantités i, a_0 et tout autre quantité relative à la roue de denture intérieure indicée 2 telle que le diamètre d_{02} ou le nombre de dents Z_2 .

$$\frac{\omega_1}{\omega_2} = \pm \frac{d_{02}}{d_{01}} = \pm i > 1 \tag{4.3}$$

En négligeant le rendement de transmission, on peut encore écrire la conservation de la puissance entre le pignon et la roue :

$$\mathcal{P}_1 = C_1 \,\omega_1 = \mathcal{P}_2 = C_2 \,\omega_2 \tag{4.4}$$

Il est classique de mettre en évidence l'augmentation du couple, inversément proportionnelle au rapport de réduction i. Ce rapport de réduction est habituellement reliée au concept de *Mechanical Advantage (MA)* présent dans la littérature anglo-saxone :

$$M_A = \frac{C_2}{C_1} = \frac{d_{02}}{d_{01}} = \frac{\omega_1}{\omega_2} = i \ge 1$$
(4.5)

Pas et module

FIGURE 4.7 – Géométrie de l'engrenage

Soit Z le nombre de dents relatif à la roue de diamètre primitif d_0 . Le **pas primitif** p des roues cylindriques à denture droite est la longueur de l'arc mesuré sur le cercle primitif entre deux points correspondants à deux flancs correspondants (droits ou gauches) (Voir Figure 4.7).

On peut écrire :

$$\pi d_{01} = Z_1 p_1 \qquad \pi d_{02} = Z_2 p_2 \tag{4.6}$$

Soit encore

$$d_{01} = Z_1 \frac{p_1}{\pi} \qquad d_{02} = Z_2 \frac{p_2}{\pi}$$

Evidemment les dentures de la roue et du pignon étant compatibles, leurs pas doivent être égaux :

$$p_1 = p_2 = p$$

On définit **module** m de la dent comme le rapport entre le pas et le nombre π .

$$m = \frac{p}{\pi}$$

Le module métrique m est très commode pour le calcul. Le module métrique est à la base de la normalisation des engrenages en Europe continentale. Les valeurs du modules m (en mm) sont normalisées. Elles sont tirées de la série de Renard reprise au Tableau 4.1 ou encore à la Figure 4.8 :

$0,\!5$	0,6	0,8	1	$1,\!25$	$1,\!5$	2	2,5	3
3	5	6	8	10	12	16	20	25

Module métrique m, pas primitif p et pas de base p_b											
Modules 0,5 à 1,5			Modules 2 à 6			Modules 8 à 25					
m	р	р _ь	m	p	р _ь	m	p	р _b			
0,5	1,570 796	1,476 066	2	6,283 185	5,904 263	8	25,132 74	23,617 (
0,6	1,884 956	1,771 279	2,5	7,853 982	7,380 329	10	31,415 93	29,521			
0,8	2,513 274	2,361 705 2,952 131	3	9,424 778	8,856 394	12	37,699 11	35,425 :			
1	3,141 593		4	12,566 371	11,808 526	16	50,265 48	47,234			
1,25	3,926 991	3,690 164	5	15,707 963	14,760 657	20	62,831 85	59,042			
1,5	4,712 389	4,428 197	6	18,849 556	17,712 789	25	78,539 82	73,803			

TABLE 4.1 – Tableau des modules normalisés

FIGURE 4.8 – Module métrique, pas et pas de base

On peut écrire les valeurs des diamètres primitifs en fonction du nombre de dents respectifs des roues et du module commun m:

$$d_{01} = Z_1 m \quad d_{02} = Z_2 m$$

Il en découle que le rapport de réduction s'exprime aussi généralement en fonction du rapport du nombre de dents sur la roue et le pignon.

$$i = \frac{Z_2}{Z_1}$$

Entraxe

En examinant la Figure 4.9, on voit que **l'entraxe** a_0 la distance entre les deux axes de rotation des engrenages vaut la demi-somme des diamètres primitifs :

$$a_0 = \frac{d_{01} + d_{02}}{2} \tag{4.7}$$

FIGURE 4.9 – Définition de l'entraxe

On peut encore écrire

$$a_0 = \frac{d_{01} \pm d_{02}}{2} = m \frac{Z_1 \pm Z_2}{2}$$

Diametral pitch

Dans la littérature anglo-saxone et en particulier dans la méthode AGMA, on préfère faire intervenir la notion de diametral pitch P_d à la place du module :

$$Pd = \frac{Z}{d'}$$
 [d']= inch (4.8)

Le pas diamétral est évidemment lié au module métrique par la relation :

$$Pd = \frac{1}{m'}$$
 [m']= inch

soit encore

$$Pd = \frac{25.4 \,\mathrm{mm}}{m} \qquad [\mathrm{m}] = \mathrm{mm}$$

4.2.2 Cinématique de l'engrènement

Motivation

Pour avoir un rapport de réduction constant avec le temps, il faut que les dents possèdent un profil particulier, conjugué l'un part rapport à l'autre. A titre de contre-exemple, les dents en forme de peigne et lanterne (Figure 4.11) donnent lieu à des fluctuations de la vitesse instantanée. Ce n'est donc pas un bon profil.

Pour que l'on ait une paire engrenage, il faut que la transformation soit **homocinétique**. Cette propriété est obtenue lorsque l'on vérifie trois conditions :

- 1. Le rapport des vitesses angulaires doit rester constant et égal au rapport d'engrènement c'est-à-dire au rapport des diamètres primitifs.
- 2. Les forces de contact passent constamment par le point de tangence des diamètre de base.
- 3. Le contact entre les dents successives ne doit pas subir d'interruption.

Conditions cinématiques pour une transmission homocinétique

Soient deux roues dentées de cercles primitifs d_{01} et d_{02} en contact au point C (Figure 4.10). Pour qu'il y ait transmission du mouvement du pignon 1 à la roue 2, les profils des dentes doivent rester constamment en contact. Supposons pour simplifier que les roues 1 et 2 soient remplacées par des morceaux de corps solides tournant autour des pivots centrées en O_1 et O_2 .

Le contact entre les corps a lieu au point A. Supposons le contact sans frottement. Les forces de contacts entre les corps 1 et 2 sont dirigées selon la normale aux deux profils. Les forces de contact excercent un moment autour des centres O_1 et O_2 dont le module dépend des bras de levier formés par les perpendiculaires abaissées depuis O_1 et O_2 sur la ligne d'action de la force de contact. Soient respectivement B et C les pieds des perpendiculaires abaissées depuis O_1 et O_2 sur la ligne d'action et r'_1 et r'_2 les longueurs deux bras de leviers centrés en O_1 et O_2 .

Dans une position quelconque, la première condition pour que les profils des dentures que l'on cherche à déterminer soit valide, il faut qu'il ait non pénétration des corps lorsque l'on a rotation des dentures 1 et 2. Cette condition de non pénétration revient à exprimer qu'il les vitesses selon la normale commune doivent être identiques :

$$\vec{v}_1 = \vec{v}_2$$

FIGURE 4.10 – Cinématique de l'engrènement

Cette équation revient à dire que les vitesses doivent avoir même direction, même sens et même intensité.

Exprimons que les vecteur ont même intensité. Il est commode d'adopter une

approche fondée sur les travaux virtuels et de considérer des déplacements infinitésimaux. Si le profil 1 est déplacé de la distance dl_1 dans la direction de la normale, le profil 2 se déplace de la même valeur :

$$dl_1 = dl_2 = dl$$

Pendant l'intervalle de temps dt les deux roues doivent tourner chacune des angles élémentaires $d\phi_1$ et $d\phi_2$. Les distances dl_1 et dl_2 s'expriment par :

$$dl_1 = r'_1 d\phi_1 \qquad dl_2 = r'_2 d\phi_2$$

Etant donné que $dl_1 = dl_2 = dl$, il vient

$$r_1' d\phi_1 = dl = r_2' d\phi_2$$

Cette dernière relation peut d'écrire sous la forme :

$$\frac{r_2'}{r_1'} = \frac{d\phi_1}{d\phi_2} = \frac{d\phi_1/dt}{d\phi_2/dt} = \frac{\omega_1}{\omega_2}$$

Le rapport des vitesses est égal à l'inverse des rapports des rayons et donc à l'inverse des vitesses angulaires des deux roues dentées.

Pour un profil de dents quelconque, les rayons r'_1 et r'_2 pourraient être modifiés à chaque instant avec le changement de point de contact A. Pour que le rapport des vitesses angulaires ω_1/ω_2 reste constant quelle que soit la position du point de contact, il faut que le rapport r'_2/r'_1 le reste aussi. Ceci revient à dire que les lignes d'action des forces de contact doivent rester tangentes respectivement aux deux cercles de rayons constants r'_1 et r'_2 centrés en O_1 et O_2 .

En second lieu, on exprime que les vecteurs vitesses ont même direction et même sens. Cette conditions nous amène à montrer que la ligne d'action des forces de contact est unique et constante qu'elle doit être simultanément tangente aux cercles de rayon r'_1 et r'_2 . La ligne d'action passe alors par le point C situé sur l'entraxe entre O_1 et O_2 .

Cette condition s'obtient en observant que l'on a similitude entre les triangles O_1CD et O_2BC . Cela permet d'écrire :

$$\frac{\overline{O_2B}}{\overline{O_1D}} = \frac{\overline{O_2C}}{\overline{O_1C}} = \frac{\overline{CB}}{\overline{CD}}$$

Etant donné que $\overline{O_2B} = r'_2$, $\overline{O_1D} = r'_1$, $\overline{O_2C} = d_{02}/2$, $\overline{O_1C} = d_{01}/2$, il vient

$$\frac{r_2'}{r_1'} = \frac{d_{02}}{d_{01}} = \frac{\omega_1}{\omega_2} = i$$

La normale commune en tout point de contact de deux profils homocinétiques doit passer par le même point central C commun aux deux profils de fonctionnement.

Il s'agit de la *loi des profils d'engrenages*. Suivant cette moi, si l'un des profils des dents est fixé, alors le profil de l'autre roue dentée s'en trouve déterminé. Ce deuxième profil se nomme alors le *profil conjugué*.

Enfin la troisième condition énoncée précédemment impose qu'en chaque instant le contact existe au moins entre une dent du pignon et une dent de la roue. Elle sera étudiée lorsque l'on calculera la longueur et le rapport de contact.

Profils de dentures conjugués

Pour avoir un rapport de réduction constant avec le temps, il faut que les dents possèdent un profil particulier, conjugué l'un part rapport à l'autre. Il existe une infinité de profils conjugué qui conviennent et vérifient la loi homocinétqiue. Toutefois en pratique seuls un petit nombre de courbes sont utilisées. les plus connus sont les courbes cycloïdales en horlogerie et de développantes de cercle (odontoïde) en mécanique pour la transmission de puissance.

A titre de contre-exemple, les dents en forme de peigne donnent lieu à des fluctuations de la vitesse instantanée (voir Figure 4.11). Ce n'est donc pas un bon profil et il ne respecte pas la condition de préservation du rapport des vitesses au cours du temps.

Les dentures cycloïdales (Figure 4.12) sont à la base des transmissions dans les mécanismes d'horlogerie. Ils ne sont plus utilisées dans les machines, à cause des difficultés de fabrication et de contrôle. Le rendement mécanique et les conditions de contact sont cependant meilleurs qu'entre les profils de dents en développante de cercle. Les profils cycloïdaux imposent un entraxe et des cercles générateurs de rayons ρ_1 et ρ_2 égaux sur les deux roues. Les dentures d'horlogerie sont souvent des dentures pseudo-cycloïdales.

Pour la transmission de puissance, la mécanique recourt aux dentures en développante de cercle qui sont plus faciles à fabriquer. La denture en odontoïde fait l'objet de la section suivante.

FIGURE 4.11 – Engrenages en forme de peigne et lanterne

FIGURE 4.12 – Dentures en cycloïde

4.2.3 Denture en développante de cercle

Développante de cercle

On appelle **développante de cercle** ou odontoïde, la courbe décrite par un point d'une droite (ou une corde) qui roule sans glisser sur la circonférence d'un cercle. La circonférence porte le nom de **cercle de base**.

L'équation de la courbe en développante de cercle s'obtient de manière pragmatique en coordonnées polaires (r, ϕ) . Il suffit de remarquer que par définition la longueur de la tangente NA est équivalente à celle de l'arc NO, puisque la corde roule sans glisser sur un cercle de rayon R et de centre O'

FIGURE 4.13 – Génération de la denture en odontoïde

(voir Figure 4.13). Dans ces conditions on a

$$R(\alpha + \phi) = R \operatorname{tg}(\alpha) \tag{4.9}$$

où l'angle α est la mesure (en radians) de l'angle entre le segment ON et le segment OA. Il est coutumier de définir la *fonction involute* $inv(\bullet)$:

$$\phi = \operatorname{tg} \alpha - \alpha = \operatorname{inv}(\alpha) \tag{4.10}$$

On peut encore écrire :

$$r\,\cos\alpha \,=\,R\tag{4.11}$$

où r = |OA| est le rayon en coordonnées polaires du point mesuré à partir de l'origine O qui matérialise le point racine de l'odontoïde. Soit

$$r = \frac{R}{\cos \alpha} \tag{4.12}$$

Méthode numérique pour calculer la développante de cercle

La méthode numérique pour calculer la développante de cercle est la suivante :

- 1. A un angle ϕ en coordonnées polaires, il correspond un angle α par la relation (4.10)
- 2. A un angle α , il correpond un rayon r en utilisant (4.12)
- 3. La zone de r retenue sera limitée par le cercle de pied et le cercle de tête de la dent (zone active).

Propriétés du profil en développante de cercle

Le profil en développante de cercle possède quelques propriétés remarquables qui sont exploitées dans les engrenages :

- La normale à la développante est toujours tangente au cercle de base.
- La tangente à la développante ne coupe pas le profil de la dent.
- Le rayon de courbure ρ en un point que lconque de la développante a son centre sur le cerc le de base.
- Deux développantes d'un même de cercle base sont équidistantes en tout point (distance mesurée sur le cercle de base).
- L'angle α est appelé angle de pression ou angle d'incidence : il varie en tout point de la développante

4.2.4 Dimensions de la dent

FIGURE 4.14 – Forme de la dent

150

Pour les engranages et les dentures industrielles, on adopte une géométrie de la dent en développante de cercle. Il convient encore de spécifier un certain nombre de paramètres tels que la distance entre les dents, leur hauteur, leur profondeur, leur épaisseur... La norme ISO exprime toutes les dimensions de la dent en fonction du module m

Soit s l'épaisseur de la dent au niveau du diamètre primitif. Evidemment pour qu'il y ait un engrènement possible, elle doit être identique à e, la largeur du creux correspondant entre deux dents.

$$s = e = \frac{p}{2} = \frac{\pi d_0}{2Z} = \frac{\pi m}{2} = = 1,5708 m$$
 (4.13)

 $L'addendum h_a$ est la hauteur de la dent normale mesurée par rapport au cercle primitif (saillie).

$$h_a = m w_{0a} \qquad w_{0a} = 1,00$$
 (ISO) (4.14)

Le dédendum h_f est la profondeur normalisée du creux entre dents, mesurées par rapport au cercle primitif.

$$h_f = m w_{0f} \qquad w_{0f} = 1,25 \text{ (ISO)}$$

$$(4.15)$$

On en déduit également le diamètre de pied :

$$d_f = d_0 - 2h_f = d_0 - 2,50 m \tag{4.16}$$

ainsi que le diamètre de tête :

$$d_a = d_0 + 2h_a = d_0 + 2,00 m \tag{4.17}$$

Les rayons minimaux et maximaux de la roue dentée sont données par :

$$r_{\min} = d_f/2$$
 $r_{\max} = d_a/2$

On note que le flanc de la dent ne peut pas être toujours intégralement tracée en développante de cercle. Le tracé en développante de cercle n'est possible que si

$$r_{min} > d_f/2$$

Pour que la forme en développante de cercle soit possible, il faut que le cercle de pied reste extérieur au cercle de base R_b

$$d_f/2 > R_b$$

FIGURE 4.15 – Ligne d'action des efforts de contact et angle de pression

4.2.5 Angle de pression

Etant donné la définition de la développante de cercle, **la ligne d'action** des efforts de contact transmis normalement aux profils des dents antagonistes reste tangente aux deux cercles de base (voir Figure 4.15).

La ligne d'action des efforts est inclinée par rapport à la tangente commune aux cylindres primitifs. Cette ligne d'action passe constamment par le point de contact G (pitch point) situé à l'intersection de la ligne d'entraxe et les cercles primitis quel que soit le point où le contact physique G' a lieu. A ce point de contact (virtuel) G, les deux pinions ont la même vitesse appelée vitesse au cercle primitif.

La droite tangente aux cercles de base et passant par le point G sur la ligne d'entraxe est unique. Dès lors l'angle entre la ligne d'action et la tangente aux cercles primitifs reste *constant*. L'angle α_0 entre la ligne d'action de la force de contact et le vecteur vitesse, tangent au cercle primitif est appelé **angle de pression**.

Dans la norme ISO, les angles de pression α_0 sont normalisés et peuvent prendre un petit nombre de valeurs : 14,5° (rare), 20° (le plus courant), ou encore 25°.

Connaissant l'angle de pression, on peut établir la relation qui lie l'entraxe a_0 , les rayons R_i des cercles de base et les diamètres des cercles primitifs d_{0i} . En observant la Figure 4.15, on voit que les rectangles O_1E_1G et O_2E_2G sont rectangles, et il vient

$$R_i = \frac{d_{0i}}{2} \cos \alpha_0 \tag{4.18}$$

4.2.6 Forces normales et tangentielles entre dents

FIGURE 4.16 – Action de l'engrènement sur a sollicitation de l'arbre monteur

La ligne d'action étant inclinée d'un angle α_0 , la force normale F_n réellement transmise de dent à dent se décompose en une force radiale F_r et une composante tangentielle F_t (Figure 4.16).

$$F_t = F_n \cos \alpha_0 \tag{4.19}$$

$$F_r = F_n \sin \alpha_0 \tag{4.20}$$

$$F_r = F_t \operatorname{tg} \alpha_0 \tag{4.21}$$

En réalité, c'est la force tangentielle F_t qui est donnée, car elle est calculée par le couple et la puissance transmise.

$$F_t \frac{d_{0i}}{2} \omega_i = \mathcal{P} \tag{4.22}$$

Connaissant F_t on peut calculer la force normale F_n :

$$F_n = \frac{F_t}{\cos \alpha_0} \tag{4.23}$$

et surtout la force radiale F_r

$$F_r = F_t \, \operatorname{tg} \alpha_0 \tag{4.24}$$

On retiendra que la force radiale F_r tend toujours à écarter les deux roues en prise.

4.2.7 Influence de la variation d'entraxe

Le déport de denture consiste à modifier l'entraxe en maintenant les cercles de base identiques. Soit δ l'accroissement d'entraxe. Même si les cercles de base restent identiques, les diamètres primitifs d'_0 et les angles de pression α' se trouvent modifiés.

Soit deux roues dentées de même module et caractérisées par les rayons des cercles de base R_1 et R_2 . Soit d_{01} et d_{02} les diamètres primitifs correspondant à l'entraxe a_0 pour un angle de pression α_0 .

Comme esquissé à la Figure 4.17 on suppose un accroissement δ de l'entraxe normal.

$$a' = a_0 + \delta \tag{4.25}$$

Les diamètres primitifs d_{01} et d_{02} sont changés en les diamètres primitifs d'_{01} et d'_{02} caractérisés par $\alpha' \neq \alpha_0$.

On peut écrire dans les deux situations, d'une part dans le cas de l'entraxe normal a_0 :

$$R_1 = \frac{d_{01}}{2} \cos \alpha_0 \qquad R_2 = \frac{d_{02}}{2} \cos \alpha_0$$

d'autre part dans la situation d'un entraxe modifié $a' = a_0 + \delta$:

$$R_1 = \frac{d'_{01}}{2} \cos \alpha' \qquad R_2 = \frac{d'_{02}}{2} \cos \alpha'$$

FIGURE 4.17 – Effet de la variation d'entreaxe

le rapport R_1/R_2 restant constant, il vient en divisant membre à membre

$$\frac{R_2}{R_1} = \frac{\frac{d_{02}}{2}\cos\alpha_0}{\frac{d_{01}}{2}\cos\alpha_0} = \frac{\frac{d'_{02}}{2}\cos\alpha'}{\frac{d'_{01}}{2}\cos\alpha'} = \frac{\frac{d_{02}}{2}}{\frac{d_{01}}{2}} = \frac{\frac{d'_{02}}{2}}{\frac{d'_{01}}{2}} = i$$

et donc

$$\frac{d'_{02}/2}{d'_{01}/2} = i = \frac{\omega_1}{\omega_2} \tag{4.26}$$

Ce qui montre qu'une variation d'entraxe ne modifie pas le rapport de réduction. Néanmoins comme $\alpha' \neq \alpha_0$, on peut écrire :

$$a' = a + \delta = \frac{d'_{01}}{2} + \frac{d'_{02}}{2} = \frac{d_{01}}{2} \frac{\cos \alpha_0}{\cos \alpha'} + \frac{d_{02}}{2} \frac{\cos \alpha_0}{\cos \alpha'}$$
$$= \frac{d_{01} + d_{02}}{2} \frac{\cos \alpha_0}{\cos \alpha'} = a_0 \frac{\cos \alpha_0}{\cos \alpha'}$$

La valeur modifiée de l'angle de pression α' vaut :

$$\cos \alpha' = \frac{\cos \alpha_0}{1 + \frac{\delta}{a_0}} \tag{4.27}$$

Une majoration de l'entre axe δ augmente l'angle de pression $\alpha' > \alpha_0$ puisque le cosinus diminue dans les mêmes conditions.

Si la force de contact F_n entre dents reste identique, le couple transmis reste invariable puisque le rayon primitif R_j n'est pas altéré

$$C_j = F_n R_j$$

Dès lors comme le couple reste constant $C_j = F_n R$, la force normale F_n reste constant et est toujours dirigé suivant la tangente commune. Par contre, l'augmentation de a_0 conduit à une diminution de F_t mais aussi et surtout à une majoration de F_r l'effort réactif radial puisque α' augmente. Il vient :

$$F_r' = F_n \sin \alpha' > F_r \tag{4.28}$$

$$F'_t = F_n \cos \alpha' < F_t \tag{4.29}$$

4.2.8 Influence de la variation de diamètre primitif. Notion de crémaillère d'engrènement

Si on examine la Figure 4.13, on voit très clairement que le rayon de courbure ρ de l'odontoïde au point A ($\rho = NA$) est une fonction du rayon du cercle de base R:

$$R = r_i \cos \alpha_i = \rho \cot \alpha_i$$

Au niveau du diamètre primitif on a

$$r_i = \frac{d_0}{2}$$
 et $\alpha_i = \alpha_0$

de sorte que

$$\rho = \frac{d_0}{2} \sin \alpha_0$$

II est clair à ce stade que ρ tend vers l'infini lorsque $Z_2(r_2)$ tend vers l'infini. Si on maintient $\alpha_0 = 20^\circ$ et si on fait tendre $R_2(d_{02})$ vers l'infini, le rayon de courbure $E'_2G = \rho$ tend également vers l'infini et le profil en odontoïde

156

dégénère en un profil plan, perpendiculaire à E_1E_2 donc incliné d'un angle α_0 sur la verticale (voir Figure 4.18).

Le profil limite obtenu lorsque $R_2(d_{02}, Z_2)$ tend vers l'infini est le profil trapézoidal normalisé qui correspond à la crémaillère d'engrènement représenté à la Figure 4.19, toutes les dimensions étant exprimées en unités module.

FIGURE 4.18 – Notion de crémaillère comme limite d'une roue dentée lorsque $Z \to \infty$

4.2.9 Interférence de denture

L'interférence de denture survient lorsqu'on a contact entre la tête de la dent et la roue dentée antagoniste en un point situé à l'intérieur du cercle de base. Etant donné que la distance qui sépare le point de tangence des cercles

FIGURE 4.19 – Crémaillère d'engrènement

FIGURE 4.20 – Crémaillère de taille normalisée

primitifs est plus grand du côté pignon, l'interférence survient en premier lieu sur le pignon.

Lors de l'engrènement, le contact entre les dentures suit la ligne d'action (E_1E_2) portée par la tangente commune aux cercles de base, inclinée de l'angle de pression α par rapport à la tangente commune aux deux cercles primitifs. Ceux-ci sont en contact virtuel au point de tangence G sur la ligne d'entraxe. Lorsque le nombre de dents du pignon devient faible, on s'aperçoit que le cercle de tête de la roue sort de la ligne d'action. Il se produit alors une *interférence d'engrènement*.

Basons nos développements sur le schéma de la Figure 4.21.

Notons tout d'abord que la distance h qui sépare le cercle primitif et le point E de tangence du cercle de base est plus faible du côté pignon (indice 1).

FIGURE 4.21 – Interférence de dentures

En effet on peut écrire

$$E_i G = \frac{d_{0i}}{2} \sin \alpha_0 \tag{4.30}$$

de sorte que

$$h_i = E_i G \sin \alpha_0 = \frac{d_{0i}}{2} \sin^2 \alpha_0$$
 (4.31)

 h_1 est donc nécessairement inférieur à h_2 . L'interférence des dentures apparaîtra d'abord du côté pignon (indice 1) puisque $h_a = m$ des deux côtés.

L'engrènement se développe dans l'intervalle E_1E_2 sur la tangente commune aux cercles de base. Le résultat d'une interférence est illustré à la Figure 4.21. On évite le contact de la tête de la dent de la roue (indicée 2) en un point de la dent antagoniste, situé à l'intérieur du cercle de base 1 si on satisfait la condition :

$$\frac{d_{a2}}{2} = \frac{d_{02}}{2} + m < O_2 E_1 \tag{4.32}$$

Calculons les différents termes de cette équation en s'aidant de la Figure 4.21

$$O_2 E_1 = \sqrt{(O_2 E_2)^2 + (E_1 E_2)^2}$$
$$O_2 E_2 = R_2 = \frac{d_{02}}{2} \cos \alpha_0$$
$$E_1 E_2 = \frac{d_{01}}{2} \sin \alpha_0 + \frac{d_{02}}{2} \sin \alpha_0$$

 et

$$O_2 E_1 = \sqrt{\frac{d_{02}^2}{4} \cos^2 \alpha_0 + \frac{d_{01}^2}{4} \sin^2 \alpha_0 + \frac{d_{02}^2}{4} \sin^2 \alpha_0 + \frac{d_{01} d_{02}}{2} \sin^2 \alpha_0}$$

L'équation (4.32) s'écrit

$$\frac{d_{02}}{2} + m \le \sqrt{\frac{d_{02}^2}{4} + \left(\frac{d_{01}^2}{4} + \frac{d_{01}d_{02}}{2}\right)\sin^2\alpha_0}$$

Divisons les deux membres par $d_{01}/2$ et introduisons le rapport de réduction $i = d_{02}/d_{01}$ ainsi que l'expression du module $m = d_{01}/Z_1$, il vient

$$i + \frac{2}{Z_1} \le \sqrt{i^2 + (1+2i)\sin^2 \alpha_0}$$
$$\frac{2}{Z_1} \le -i + \sqrt{i^2 + (1+2i)\sin^2 \alpha_0}$$
$$Z_1 \ge \frac{2}{-i + \sqrt{i^2 + (1+2i)\sin^2 \alpha_0}}$$
$$Z_1 \ge 2\frac{i + \sqrt{i^2 + (1+2i)\sin^2 \alpha_0}}{(1+2i)\sin^2 \alpha_0}$$

Soit au final la condition s'écrit

$$Z_1 \ge \frac{2}{(1+2i)\sin^2 \alpha_0} \left(i + \sqrt{i^2 + (1+2i)\sin^2 \alpha_0} \right)$$
(4.33)

Il s'en suit qu'à une valeur de i correspond une valeur de Z_1 , nombre de dents en dessous duquel on a interférence de denture.

160

Pour les dimensions normalisées de la dent et un angle de pression $\alpha_0 = 20^{\circ}$, on montre que

$$Z_1 \ge 12,32$$
 soit $Z_1 \ge 13$ pour $i=1$

Dans ces conditions, la hauteur utile mesurée vers le creux de la dent à partir des cercles primitifs, lorsque le pied de dent est entièrement en développante vaut :

$$\begin{aligned} h_1' &= \frac{d_{01}}{2} - R_1 = \frac{d_{01}}{2} (1 - \cos 20^\circ) \\ &= Z_1 \, m \, \sin^2 10^\circ = 13 \, \sin^2 10^\circ \, m \, = \, 0,392 \, m \end{aligned}$$

La hauteur utile sous le diamètre primitif est donc inférieure au module (tracé du flanc de la dent à définir entre le cercle de base et le cercle de pied).

A côté de l'interférence de denture qui survient lors de l'engrènement des roues dentées, on peut avoir également un phénomène d'interférence lors de la génération et la taille de l'engrenage par la crémaillère. On parle alors *d'interférence de taille*.

La crémaillère correspond à un cercle de rayon infini et donc aussi à un nombre infini de dents. On peut utiliser les formules précédentes à condition de faire tendre le rapport i vers l'infini.

$$i = \frac{d_{02}}{d_{01}} \to \infty$$

Le nombre de dents minimum Z_1 en dessous duquel il y a interférence peut être calculé à partir de l'expression précédente. Il vient :

$$\lim_{i \to \infty} Z_1 = \frac{2}{(1+2i)\sin^2 \alpha_0} \left(i + \sqrt{i^2 + (1+2i)\sin^2 \alpha_0} \right)$$
(4.34)
$$= \frac{2}{\sin^2 \alpha_0} = 17,09$$

Dès lors, en pratique, l'interférence de taille est détectée en-dessous de 17 dents, limite notée par Z_g .

$$Z_g = 17 \tag{4.35}$$

Ce même résultat aurait pu être obtenu plus directement en tenant un raisonnement purement géométrique basé sur le schéma de la Figure 4.22.

FIGURE 4.22 – Interférence de taille

Le profil de la crémaillère de taille n'entame pas le cercle de base au point E_1 si la distance h est supérieure à un module m qui est la distance d'addendum. Il vient :

$$h = E_1 G \,\sin\alpha_0 = \frac{d_{01}}{2} \,\sin\alpha_0$$

Soit la condition de non interférence :

h < m

Il vient

$$m \leq \frac{Z_1 m}{2} \sin \alpha_0$$

$$Z_1 \geq \frac{2}{\sin \alpha_0} = Z_g$$
(4.36)

L'interférence est évitée dès que

$$Z \ge 17 \,\text{dents} \tag{4.37}$$

On peut également calculer la valeur de la hauteur utile du dédendum des dents du pignon ainsi taillé :

$$h_1'' = \frac{d_{01}}{2} (1 - \cos 20^\circ)$$

= $Z_g m \sin^2 10^\circ = 17 \sin^2 10^\circ m = 0,512 m$

En pratique on peut tolérer descendre jusque 14 dents, car jusqu'à ce nombre, l'interférence reste faible.

4.2.10 Déport de denture

Notion de déport

L'interférence de taille peut être évitée de plusieurs manières :

- Augmenter l'angle de pression α . On notera que cette disposition augmente la composante réactive F_r de la force normale sur la denture F_n .
- Diminuer w_{0a} . Par exemple dans les dentures Stub, on adopte $W_{0a} = 0,785m$. Cette pratique est actuellement abandonnée à cause du mauvais recouvrement qu'elle induit.
- Augmenter Z_1 pour atteindre $Z_g = 14$ dents au minimum. Ceci n'est pas toujours possible à cause de l'encombrement qu en résulte.
- Déporter l'outil de taille vers l'extérieur de la roue de manière à translater la ligne de réference de l'outil de taille (Voir Fig. 4.23).

FIGURE 4.23 – Notion de correction de denture

Le déport est réalisé de sorte que le point A_1 caractéristique de l'addendum de l'outil de coupe arrive à la même hauteur que le point de tangence sur le cercle de base. On définit le déport par la lettre X

$$X = x m \tag{4.38}$$

Le déport est mesuré en m
m puisque le module m l'est également.

FIGURE 4.24 – Interférence de taille et déport

En observant la Figure 4.24, il vient :

$$h_1 + x m = m$$
$$h_1 = E_1 G \sin \alpha_0 = \frac{d_{01}}{2} \sin \alpha_0$$
$$\frac{Z_1 m}{2} \sin \alpha_0 + x m = m$$

1 22 222 - 222

En se rappellant que

$$Z_g = \frac{2}{\sin^2 \alpha_0}$$

on a

$$\frac{Z_1}{g} + x = 1$$

d'où

$$x_{th} = \frac{Z_g - Z_1}{Z_g} = \frac{17 - Z_1}{17}$$
(4.39)

En pratique on définit $Z'_q = 14$ et on a

$$x_{pratique} = \frac{14 - Z_1}{17} \tag{4.40}$$

A ce stade, plusieurs remarques s'imposent :

- 1. Dans le cas d'une denture déportée, on observe que la circonférence moyenne ne se superpose pas à la circonférence primitive initiale de la géométrie normalisée.
- 2. Le déport de l'outil de X mm dans un sens ou dans un autre entraîne un déplacement correspondant de la circonférence de tête et de pied.

$$d_{fx} = d_f + 2X = d_0 - 2,5 m + 2 m$$
$$d_{ax} = d_a + 2X = d_0 + 2 m + 2 m$$

3. L'épaisseur de la dent au niveau du diamètre primitif est majoré (minorée) du fait du retrait X > 0 [pénétration X < 0] de la crémaillère de taille (Voir Figure 4.25). L'épaisseur de la dent mesurée au diamètre primitif normal vaut maintenant :

$$S_{0x} = S_0 \pm 2X \tan \alpha \tag{4.41}$$

- 4. Le déport maximum positif est limité par l'intersection des flancs en développante de cercle : la hauteur 2m de la dent doit rester en deçà du rayon caractéristique de l'intersection des flancs.
- 5. D'une manière générale, pour une couronne dentée par exemple, le déport positif est celui qui conduit à une dent plus résistante. La Figure 4.26 montre l'évolution de la forme de la dent lorsque l'on réalise un déport positif ou négatif et que l'on la compare à la forme normalisée.

Calcul de la géométrie de la dent après déport

La Figure 4.27 met en évidence la propriété fondamentale de l'odontoïde à savoir que l'arc $\widehat{OA'E_1}$ vaut le rayon de courbure en B $\rho_B = BE_1$. Dès lors on peut écrire :

$$\widehat{OA'} = R_1(\tan \alpha_B - \alpha_B) = R_1 \operatorname{inv}(\alpha_B) = R_1 \phi_B \tag{4.42}$$

On calcule ensuite la largeur de la dent au rayon r_B dans le cas d'une roue déportée. En se référant au schéma de la Figure 4.28, on peut écrire

$$S_B = (S_{0x} - 2\widehat{CC'})\frac{2r_B}{d_{01}}$$

FIGURE 4.25 – Evolution des épaisseurs au niveau du diamètre primitif normal

FIGURE 4.26 – Evolution de la forme de la dent avec signe du déport

où X et x sont pris en valeur relative. On détermine

$$S_{0x} = S_0 + 2X \tan \alpha_0 = \frac{\pi m}{2} + 2x m \tan \alpha_0$$
$$\widehat{CC'} = \widehat{AA'} \frac{d_{01}}{2R_1}$$

FIGURE 4.27 – Profil et épaisseur de la dent avec déport

$$\widehat{AA'} = R_1 \left[\operatorname{inv}(\alpha_B) - \operatorname{inv}(\alpha_0) \right]$$

Il vient

$$S_{B} = \left[\frac{\pi m}{2} + 2 x m \tan \alpha_{0} - Z_{1} m \left[\operatorname{inv}(\alpha_{B}) - \operatorname{inv}(\alpha_{0})\right]\right] \frac{2 r_{B}}{d_{01}}$$

$$S_{B} = \left[\frac{\pi m}{2} + 2 x m \tan \alpha_{0} - Z_{1} m \left[\operatorname{inv}(\alpha_{B}) - \operatorname{inv}(\alpha_{0})\right]\right] \frac{2 r_{B}}{Z_{1} m}$$

$$S_{B} = 2 r_{B} \left[\frac{1}{Z_{1}}(\frac{\pi}{2} + 2 x \tan \alpha_{0}) - \left[\operatorname{inv}(\alpha_{B}) - \operatorname{inv}(\alpha_{0})\right]\right]$$
(4.43)

Or

$$r_B \cos \alpha_B = R_1 = \frac{d_{01}}{2} \cos \alpha_0 = \frac{Z_1 m}{2} \cos \alpha_0$$
$$2 r_B = Z_1 m \frac{\cos \alpha_0}{\cos \alpha_B}$$
(4.44)

Partant de là, on a finalement

$$S_B = Z_1 m \frac{\cos \alpha_0}{\cos \alpha_B} \left[\frac{1}{Z_1 m} (\frac{\pi}{2} + 2x \tan \alpha_0) - [\operatorname{inv}(\alpha_B) - \operatorname{inv}(\alpha_0)] \right]$$
(4.45)

FIGURE 4.28 – Epaisseur ${\cal S}_B$ de la dent au rayon r_B

Calcul du déport maximum

Considérons un déport positif x > 0. Le déport ne peut être augmenté infiniment. A un certain moment, les deux portion d'odontoïde se rejoindgent et la dent à une épaisseur nulle. Soit la valeur du déport x_M pour lequel on obtient une épaisseur de dent nulle $S_B = 0$.

La condition $S_B = 0$ s'exprime à l'aide de l'équation (4.43). Il vient

$$\frac{1}{Z}\left(\frac{\pi}{2} + 2x_M \tan \alpha_0\right) = \left[\operatorname{inv}(\alpha_B) - \operatorname{inv}(\alpha_0)\right]$$

En utilisant l'equation (4.44), on peut exprimer le rayon r_B correspondant,

$$r_B^M = \frac{a_0}{2} + m + x_M m = \frac{a_{ax}}{2}$$
$$r_B^M = \frac{Zm}{2} + m + x_M m = \frac{Zm}{2} \frac{\cos \alpha_0}{\cos \alpha_B}$$

On obtient

$$\frac{Z}{2} + 1 + x_M = \frac{Z}{2} \frac{\cos \alpha_0}{\cos \alpha_B}$$

168

avec

$$x_M = \frac{14 - Z}{17}$$

On obtient le système à résoudre pour déterminer Z et α_B :

$$\begin{cases} \frac{1}{Z} \left(\frac{\pi}{2} + 2 x_M \tan \alpha_0\right) = \left[\operatorname{inv}(\alpha_B) - \operatorname{inv}(\alpha_0)\right] \\ \frac{Z}{2} + 1 + \frac{14-Z}{17} = \frac{Z}{2} \frac{\cos \alpha_0}{\cos \alpha_B} \end{cases}$$

Ce système peut être résolu par approximations successives. On trouve — Solution analytique

 $x_M = 0,458$ Z = 6,21 $\alpha_B = 50^{\circ}75'10''$

— Solution pratique

$$x_M = 0,418$$
 $Z = 7$ $\alpha_B = 47^{\circ}59'49''$

On ne pourra donc jamais decendre en dessous de 7 dents. un nombre plus faible entraîne automatiquement une troncature de la dent et donc une hauteur inférieure à 2 modules.

Calcul de l'entraxe après déport

Reprenons la relation fixant la largeur de la dent au rayon r_B sachant que le pas mesuré au rayon r_B vaut toujours

$$p_B = S_{B,1} + S_{B,2}$$

et introduisons les coefficients de déport en valeurs relatives.

Si le pas est à présent mesuré au niveau de la circonférence primitive du système déporté, il s'agit alors du pas de référence p' qui vérifie les relations

$$\pi d'_{01} = Z_1 p'$$

$$\pi d'_{02} = Z_2 p'$$

Suite aux relations (4.43), le pas p_B caractéristique des rayons r_{B1} et r_{B2} est donné par :

$$p_B = 2r_{B1} \left[\frac{1}{Z_1} \left(\frac{\pi}{2} + 2 x_1 \tan \alpha_0 \right) - \left[\operatorname{inv}(\alpha_{B1}) - \operatorname{inv}(\alpha_0) \right] \right] \\ + 2r_{B2} \left[\frac{1}{Z_2} \left(\frac{\pi}{2} + 2 x_2 \tan \alpha_0 \right) - \left[\operatorname{inv}(\alpha_{B2}) - \operatorname{inv}(\alpha_0) \right] \right]$$

S'il s'agit du pas de référence, on adopte

$$2r_{B1} = d'_{01}$$
 $p_B = p'$
 $2r_{B2} = d'_{02}$ $\alpha_{B1} = \alpha_{B2} = \alpha'$

Ce qui donne Suite aux relations (4.43), le pas p_B caractéristique des rayons r_{B1} et r_{B2} est donné par :

$$p_B = d'_{01} \left[\frac{1}{Z_1} (\frac{\pi}{2} + 2 x_1 \tan \alpha_0) - [\operatorname{inv}(\alpha') - \operatorname{inv}(\alpha_0)] \right] \\ + d'_{02} \left[\frac{1}{Z_2} (\frac{\pi}{2} + 2 x_2 \tan \alpha_0) - [\operatorname{inv}(\alpha') - \operatorname{inv}(\alpha_0)] \right]$$

Sachant que

$$d'_{01} = \frac{Z_1 p'}{\pi} \qquad d'_{02} = \frac{Z_2 p'}{\pi}$$

On peut simplifier l'expression

$$2(x_1 + x_2) \tan \alpha_0 = (Z_1 + Z_2) [inv(\alpha') - inv(\alpha_0)]$$

On obtient la formule fondamentale donnant α' l'angle de pression dans le système déporté :

$$\operatorname{inv}(\alpha') = \operatorname{inv}(\alpha_0) + 2 \, \frac{x_1 + x_2}{Z_1 + Z_2} \, \tan \alpha_0 \tag{4.46}$$

 α' étant connu, on peut en déduire l'entraxe corrigé

$$a = \frac{d'_{01} + d'_{02}}{2} = \frac{d_{01}}{2} \frac{\cos \alpha_0}{\cos \alpha'} + \frac{d_{02}}{2} \frac{\cos \alpha_0}{\cos \alpha'}$$
$$a = a_0 \frac{\cos \alpha_0}{\cos \alpha'} = m \frac{Z_1 + Z_2}{2} \frac{\cos \alpha_0}{\cos \alpha'}$$
(4.47)

Une formule approchée, résultant d'un développement en série tronqué peut être utilisé en première approximation.

$$a = a_0 + \frac{(x_1 + x_2) m}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{Z_1 + Z_2}\right)}}$$
(4.48)

On a, évidemment, le cas particulier,

 $x_1 + x_2 = 0 \quad \Rightarrow \quad a_0 = a$

A ce stade, plusieurs remarques s'imposent :

170

FIGURE 4.29 – Angle de pression fonction de la somme des déports $x_1 + x_2$ et de la somme du nombre de dents $Z_1 + Z_2$ ou $Z_{1v} + Z_{2v}$

- 1. Toutes les fomules démontrées ci-dessus restent valables dans le cas d'une denture intérieure à condition d'affecter d'un signe 'moins' les grandeurs Z_2 , i, a_0 , a, ainsi que tout diamètre indicé 2. On considère en outre qu'un déport x_2 positif conduit à déplacer la crémaillère de taille fictive vers le centre de la roue 2, dans la direction des têtes des dents réelles de la courronne.
- 2. Ordre de grandeurs préconisés pour la somme $x_1 + x_2$

Grande Résistance

$$x_1 + x_2 \simeq 0, 9$$

Grand Recouvrement

$$(x_1 + x_2) = 0,7$$
 pour $Z_1 + Z_2 \le 20$
 $-0, 2 < (x_1 + x_2) < 0,7$ pour $20 < Z_1 + Z_2 \le 60$
 $(x_1 + x_2) = -0,2$ pour $Z_1 + Z_2 > 60$

3. Roues dentées particulières $x_1 + x_2 = 0, 5$. Elles sont normalisées DIN3995 ($Z \ge 8$). Cette denture présente une très grande résistance mécanique et est préconisée pour des effort (couples) alternés.

Exemple de procédure de déport

Premier Cas : l'entraxe n'est soumis à aucune contrainte d'encombrement

Supposons qu'un calcul de résistance conduise aux valeurs particulière de m, Z_1, Z_2 . La procédure est alors systématique.

- On choisit $x_1 + x_2$ e, fonction de $Z_1 + Z_2$ et de la condition fonctionnelle requise.
- On se fixe x_1 en adoptant la formule suggérée par l'ISO

$$x_1 = \lambda \frac{Z_2 - Z_1}{Z_2 + Z_2} + (x_1 + x_2) \frac{Z_1}{Z_2 + Z_1}$$
(4.49)

avec

$$0, 5 < \lambda < 0, 75$$

On prend en moyenne $\lambda = 0, 6.$

— On en déduit x_2

$$x_2 = (x_1 + x_2) - x_1$$

et la valeur de l'entraxe réel par l'équation (4.48)

Second Cas : l'entraxe est imposé

Les valeurs m, Z_1, Z_2 fournies par le calcul de résistance doivent à présent vérifier la valeur l'entraxe imposé \bar{a} :

$$\bar{a} \simeq \frac{Z_1 m}{2} (1+i) = a_0$$

L'égalité stricte des deux membres est rarement vérifiée dans le cas des dentures droites car m est normalisé, Z_1 et Z_2 sont des enteirs premiers entre eux avec un rapport de réduction $i = Z_2/Z_1$ fixé par l'application.

Le problème sera résolu en introduisant un déport de denture tel que l'entraxe modifié soit égal à l'entraxe imposé \bar{a} . Dans ces conditions on écrit

$$\bar{a} = a_0 \, \frac{\cos \alpha_0}{\cos \alpha'}$$

On en déduit une valeur de α' .

$$\cos \alpha' = \frac{a_0}{\bar{a}} \, \cos \alpha_0$$

— On en déduit la valeur de α' et, partant de là, la somme des déports $x_1 + x_2$ par calcul

$$a = a_0 + \frac{(x_1 + x_2) m}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{Z_1 + Z_2}\right)}}$$

ou par utilisation de l'abaque (4.29).

— On fixe ensuite x_1

$$x_1 = \lambda \, \frac{Z_2 - Z_1}{Z_2 + Z_2} \, + \, (x_1 + x_2) \, \frac{Z_1}{Z_2 + Z_1}$$

avec 0,5 < λ < 0,75 (on prend rédulièrement la valeur moyenne $\lambda=0,6.$

— On en déduit x_2

$$x_2 = (x_1 + x_2) - x_1$$

4.2.11 Notion de recouvrement de dentures

Définition

FIGURE 4.30 – Recouvrement de dentures

Quand le nombre de dents du pignon est maintenu supérieur au nombre limite caractéristique de l'interférence, soit que $Z_1 \ge Z_{lim}(i, \alpha_0)$, le contact des dents a lieu le long de la ligne de pression E_1E_2 (Voir Figure 4.30). Le

FIGURE 4.31 – Recouvrement de dentures. Calcul de la longueur de la ligne d'action

contact survient entre les intersections de la ligne d'action avec respectivement les cercles d'addendum et de dédendum des dents des engrenages en opposition.

On note par E'_1 l'interaction du cercle de tête de la roue 2 d_{a2} avec la ligne de pression et par E'_2 l'interaction du cercle de tête de la roue 1 d_{a1} avec la ligne de pression. Dans le cas d'une rotation en sens horlogique de la roue 2, le contact débute en un point E'_2 et se termine en E'_1 situés dans l'intervalle compris entre les deux points de tangence aux cercles de base respectifs (voir Figure 4.31). On dit qu'il y a approche entre E'_2 et G et retraite entre G et E'_1 .

Les points de début et de fin de contact entre les dents E'_1 et E'_2 définissent
l'engrènement de la roue et du pignon. La longueur mesurée le long de la ligne d'action entre ces deux points de début et de fin de contact est appelée *longueur de de conduite* (Voir Figure 4.30).

Par convention, le **recouvrement** se mesure sur la tangente commune aux circonférences de base. Le recouvrement est défini comme le rapport de la longueur de conduite au pas de base p_b .

Soit ℓ la longueur de conduite $E'_1E'_2$.

$$\ell = E_1' E_2' \tag{4.50}$$

La projection de la longueur de conduite sur la tangente au cercle de base est $E_1''E_2''$. C'est le paramètre e_{α} :

$$e_{\alpha} = \frac{\ell}{\cos \alpha_0} = E_1'' E_2'' \tag{4.51}$$

Le pas de base p_b est par définition la distance qui sépare deux profils homologues mesurée sur une tangente au cercle de base. On note que le pas p_b est un invariant même dans le cas d'un déport de denture puisque Z et R sont simultanément constants. p_b est par ailleurs lié au pas primitif p par la même relation que les diamètres correspondants. En effet :

$$2\pi R = Z p_b$$
$$\pi d_0 = Z p$$

d'où

$$\frac{p_b}{p} = \frac{2R}{d_0}$$

et dès lors puisque $2R = d_0 \cos \alpha_0$, on a

$$p_b = p \cos \alpha_0 \tag{4.52}$$

Le **rapport de conduite** ε_{α} est le rapport de la longueur de conduite ℓ au pas de base p_b .

$$\varepsilon_{\alpha} = \frac{\ell}{p_b} \tag{4.53}$$

De manière équivalente, on peut réécrire l'expression du rapport de conduite :

$$\varepsilon_{\alpha} = \frac{\ell}{p_b} = \frac{e_{\alpha} \cos \alpha_0}{p_b} = \frac{e_{\alpha}}{p}$$
 (4.54)

Il faut que ce paramètre ε_{α} soit au moins égal à l'unité pour que l'on ait continuité du contact, c'est-à-dire qu'une dent soit en approche lorsque la précédente termine sa retraite.

$$\varepsilon_{\alpha} \ge 1$$
 (4.55)

Pour éviter les chocs, il est convient en pratique de choisir ε_{α} supérieur à 1, soit en pratique $\varepsilon_{\alpha} \ge 1,25$ au moins. On considère qu'un recouvrement $\varepsilon_{\alpha} = 2$ est excellent. Ce nombre indique quel est en moyenne le nombre de dents en contact.

Calcul du recouvrement

Calculons à présent le rapport de conduite dans le cas d'un déport nul. Le résultat sera ensuite étendu sans démonstration au cas d'un déport non nul.

Le calcul de la longueur de la ligne d'action s'organise comme suit. On va d'abord calculer la longueur E_1E_2 . Ensuite pour calculer la longueur $E'_1E'_2$, on remarque qu'il faut retrancher de E_1E_2 les longueurs $E_1E'_2$ et $E_2E'_1$. Après les avoir calculées, on sera alors en mesure de dégager l'expression de $E'_1E'_2$.

De l'examen des triangles rectangles $O_2 E_2 G$ et $O_1 E_1 G$ on tire

$$E_1 E_2 = \frac{d_{01}}{2} \sin \alpha_0 + \frac{d_{02}}{2} \sin \alpha_0 = a_0 \sin \alpha_0 \qquad (4.56)$$

On remarque ensuite que

$$E_2 E'_2 = E_1 E_2 - E_1 E'_2$$

$$E_1 E'_1 = E_1 E_2 - E_2 E'_1$$

Le théorème de Pythagore dans les triangles rectangles $O_1E_1E'2$ et $O_2E_2E'1$ nous donne :

$$E_1 E'_2 = \sqrt{R_{a1}^2 - R_1^2}$$
$$E_2 E'_1 = \sqrt{R_{a2}^2 - R_2^2}$$

avec R_{ai} le rayon de la tête de dent et R_i le rayon du cercle de base de la roue dentée *i*. Ces rayons sont calculables et leur valeur est donnée par :

$$R_{ai} = \frac{d_{oi}}{2} + m$$
$$R_i = \frac{d_{oi}}{2} \cos \alpha_0 = \frac{Z_i m}{2} \cos \alpha_0$$

Il vient donc dans le cas de roues normales :

$$E'_{1}E'_{2} = E_{1}E_{2} - E_{1}E'_{1} - E_{2}E'_{2}$$

= $E_{1}E_{2} - (E_{1}E_{2} - E_{2}E'_{1}) - (E_{1}E_{2} - E_{1}E'_{2})$
= $E_{1}E'_{2} + E_{2}E'_{1} - E_{1}E_{2}$

On peut alors calculer la longueur de conduite :

$$\ell = e_{\alpha} \cos \alpha = \sqrt{R_{a1}^2 - R_1^2} + \sqrt{R_{a2}^2 - R_2^2} - a_0 \sin \alpha_0 \tag{4.57}$$

ainsi que le recouvrement :

$$\varepsilon_{\alpha} = \frac{e_{\alpha}}{p} = \frac{\ell}{p \cos \alpha_0} = \frac{\sqrt{R_{a1}^2 - R_1^2} + \sqrt{R_{a2}^2 - R_2^2} - a_0 \sin \alpha_0}{p \cos \alpha_0} \quad (4.58)$$

Dans ces conditions, on peut calculer le nombre de dents Z_1 qui, pour un de réduction *i* donné, conduit à un rapport de réduction $\varepsilon_{\alpha} > 1,25$ fixé à l'avance. Pour obtenir une expression exploitable pour le calcul pratique, on remplace Z_2 par sa valeur en fonction de *i* et Z_1 ainsi que la valeur du pas *p* et des diamètres primitifs en fonction du module *m*.

$$Z_2 = Z_1 i \qquad p = \pi m \qquad d_0 = Z m$$

Après quelques manipulations algébriques, on peut écrire :

$$\varepsilon_{\alpha} = \frac{\sqrt{m^2(\frac{Z_1}{2}+1) - \frac{Z_1^2 m^2}{4} \cos \alpha_0}}{\pi \, m \, \cos \alpha_0} + \frac{\sqrt{m^2(\frac{iZ_1}{2}+1) - \frac{i^2 Z_1^2 m^2}{4} \cos \alpha_0} - \frac{mZ_1}{2}(i+1) \, \sin \alpha_0}{\pi \, m \, \cos \alpha_0}$$
(4.59)

et en simplifiant haut et bas par m, on trouve

$$\varepsilon_{\alpha} = \frac{\sqrt{\left(\frac{Z_{1}}{2}+1\right) - \frac{Z_{1}^{2}}{4}\cos\alpha_{0}} + \sqrt{\left(\frac{iZ_{1}}{2}+1\right) - \frac{i^{2}Z_{1}^{2}}{4}\cos\alpha_{0}} - \frac{Z_{1}}{2}(i+1)\sin\alpha_{0}}{\pi\cos\alpha_{0}}}{(4.60)}$$

On démontre que dans le cas d'une denture intérieure, la deuxième racine doit être affectée d'un signe "moins".

4.3 RESISTANCE DES DENTURES DROITES

Une denture se définit complètement à partir du module m dont la valeur approximative résulte d'un calcul de résistance des matériaux.

La résistance des dentures est examinée au travers de deux critères :

- 1. La résistance à la flexion des dents
- 2. La résistance à la pression de contact

Les contraintes de référence sont calculées dans des situations idéalisées et affectées d'une série de coefficients pour tenir compte de la situation réelle.

Les expresions génériques de la contrainte ou de la pression de contact de référence sont à l'origine de la procédure de vérification des dentures selon les normes AGMA et ISO.

4.3.1 Résistance à la flexion

FIGURE 4.32 – Situation idéalisée de calcul de résistance à la flexion de la dent

La résistance de la dent se calcule en faisant l'approximation que la dent est assimilée à une poutre encastrée, fléchie par la composante tangentielle F_t de la force de contact que l'on supposera située à son sommet afin de se placer dans le cas le plus défavorable.

4.3. RESISTANCE DES DENTURES

L'approximation néglige volontairement l'effet de la composante radiale F_r génératrice de compression, car elle renforce la résistance à la fatigue de la dent.

FIGURE 4.33 – Facteurs d'application de la charge ou facteurs de service d'après Richter-Ohlendorf

La valeur de la force de flexion sur la dent est estimée à partir de la puissance transmise et de la vitesse de rotation :

$$F_t = C_s \frac{\mathcal{P}}{v} = C_s \frac{\mathcal{P} \, 60}{\pi \, d_0 \, N} \tag{4.61}$$

On a tenu compte d'un facteur de service C_s rendant compte de l'irrégularité

de la force dans différentes applications à défaut de plus amples informations. Il peut s'estimer à partir de l'abaque de Richter Olhendorf (Voir Figure 4.33).

Pour rappel, on suppose connues les données géométriques suivantes :

- La hauteur de la dent est h = 2,225 m;
- La largeur de la dent est b = k m, avec k un facteur de forme dont la valeur est à définir;
- L'épaisseur de la dent au niveau du diamétre primitif est donnée par :

$$e = \frac{p}{2} = \frac{\pi m}{2}$$

Dès lors, le moment de flexion maximal à l'encastrement est donné par :

$$M = F_t h = F_t 2,25 m$$

Le moment d'inertie de la section (rectangulaire) de la dent est classiquement donné par :

$$I = \frac{be^3}{12} = b \frac{\pi^3 m^3}{96} = k \frac{\pi^3 m^4}{96}$$

La contrainte maximale de flexion vaut :

$$\sigma = \frac{M y}{I} = \frac{M e/2}{I}$$

En introduisant les valeurs précédentes, on obtient

$$\sigma = \frac{F_t (2, 25 m) (\pi m/4)}{b \pi^3 m^3/96} = \frac{F_t (2, 25 m) (\pi m/4)}{k \pi^3 m^4/96}$$
$$= 5,47 \frac{F_t}{b m} = 5,47 \frac{F_t}{k m^2}$$
(4.62)

Il s'agit de la formule de Lewis (1892) [12].

La contrainte de flexion ainsi estimée doit maintenant être comparée à une contrainte admissible par le matériau R_{ϕ} . Selon la DIN 3990, on adopte les tensions admissibles suivantes :

Mouvements lents
$$R_{\phi} = \frac{R_0^{Flex}}{2.5}$$

Mouvements rapides
- avec couples répétés $R_{\phi} = \frac{R_0^+}{2}$
- avec couples alternés $R_{\phi} = \frac{R_0^\pm}{2.5}$

ABLI	E 4.2 – Š	Valeurs	des coe	fficients	de Lew	vis pour	$\alpha_0 = 20$
Z_1	10	20	30	50	75	100	300
Φ_L	0,201	0,320	0,358	0,408	0,433	0,446	0,471

Т

avec R_0^{Flex} la limite admissible en flexion, R_0^+ la limite admissible en traction, et R_0^{\pm} la contrainte admissible en traction compression.

La comparaison entre la contrainte de flexion de référence et la contrainte admissible permet de vérifier la résistance de la dent :

$$5,47 \, \frac{F_t}{k \, m^2} \leq R_\phi \tag{4.63}$$

DROITES

Pour un matériau donné, la formule permet de déterminer le module :

$$m \geq 2,34\sqrt{\frac{F_t}{k R_\phi}} \tag{4.64}$$

On choisit le module normalisé immédiatement supérieur dans la série de Renard.

Méthode de Lewis

Dans l'approche américaine proposée par Lewis [12] et reprise ultérieurement par l'AGMA[2], la formule donnant l'estimation de la contrainte de flexion en pied de dent s'écrit en fonction du pas diamétral $p_d = 1/m'$ avec m' exprimé en pouces.

$$\sigma = \frac{F_t p_d}{\Phi_L(Z_1) b}$$
(4.65)

Pour améliorer l'estimation de l'approximation poutre, Lewis établit par ailleurs une table de coefficients $\Phi_L(Z_1)$ tenant compte de la géométrie. Le coefficient $\Phi_L(Z_1)$ est fonction du nombre de dents (voir Table 4.2).

Le choix du module est alors réalisé sur base de la formule suivante :

$$m \geq \frac{F_t}{\Phi_L(Z_1) \, b \, R_\phi} \tag{4.66}$$

Calcul de la résistance à la flexion selon la méthode AGMA [2, 1]

On calcule une tension de flexion de référence basée sur l'estimation de Lewis. On peut également calculer une tension de compression, mais celle-ci est généralement négligée. On multiplie la tension de flexion résultante par **une série de coefficients** tenant compte de l'état réel de la géométrie, de l'engrènement, de la qualité de fabrication, de la régularité de l'application de la charge, etc. On compare enfin le produit résultant de cette opération à une tension admissible (HD à coeur) en fonction de la durée de vie exigée (limite d'endurance en rapport avec le nombre de cycles).

$$\sigma = \frac{F_t}{b m J} \frac{K_a K_m}{K_v} K_s K_B K_I$$
(4.67)

1/ L'effet de géométrie est introduit par le facteur J tient compte de la géométrie de la dent. Il est déterminé suivant un algorithme complexe défini par la norme AGMA 908-B89 [2]. Il est donné soit sous forme de tables ou d'abaques. Remarquons que les facteurs J sont différents pour les pignons et pour les roues ainsi que pour les dentures intérieures. Le facteur J dépend en particulier de la géométrie du pied de la dent et du nombre de dents Z (Voir Figures 4.34 et 4.35). Le choix entre le chargement en tête de dent (tip loading) ou entre le point le plus haut de chargement sur une seule dent (Highest Point of Single Tooth Contact - HPSTC) dépend de la précision de la fabrication des engrenages. Si l'engrenage a été fabriqué avec une bonne précision (meilleurs procédés de fabrication), alors on peut supposer qu'il y a généralement partage de la charge entre plusieurs dents et le HPSTC peut être choisi. Dans le cas contraire, une mauvaise qualité de denture entraîne souvent une situation où une seule dent doit supporter seule toute la charge et il est admis que l'on se place en sécurité en considérant le cas le plus défavorable où une seule dent est chargé au niveau du diamètre de tête.

2/ Le facteur K_v ou facteur dynamique tient compte des charges dynamiques et des vibrations induites par les impacts entre dents antagonistes. Les charges vibratoires sont appelées erreurs de transmission et sont plus pénalisantes avec les engrenages de moindre précision. En l'absence de données, on peut approcher K_v par des courbes telles que celles de la Figure 4.36 ou de manière équivalente par les formules suivantes :

$$K_v = \left(\frac{A}{A + \sqrt{200V_t}}\right)^B \tag{4.68}$$

								Pinion	teeth					280	2191	
Gear	12		1	4	1	7	2	1	2	6	3	15	55		13	135
teeth	Р	G	P	G	P	G	P	G	Р	G	P	G	P	G	P	G
12	U	U	1.1.1	its the			MASSI	mand			estin.	ienseer.		bi	0.00	
14	U	U	U	U												
17	U	U	U	U	U	U										
21	U	U	U	U	U	U	0.24	0.24								
26	U	U	U	U	U	U	0.24	0.25	0.25	0.25						
35	U	U	U	U	U	U	0.24	0.26	0.25	0.26	0.26	0.26				
55	U	U	U	U	U	U	0.24	0.28	0.25	0.28	0.26	0.28	0.28	0.28		
135 able 1	U 11-9	U AGN	U A Ben	U ding C	U	U try Fa	0.24 ctor J fe	0.29 or 20°	0.25 Full-D	0.29 epth 1	0.26 Teeth w	0.29 vith HF	0.28	0.29 oadins	0.29	6.2
135 able 1	U 1-9	U AGN	U IA Ben	U ding C	U	U try Fa	0.24 ctor J fe	0.29 or 20°, Pinion	0.25 Full-D teeth	0.29 epth 1	0.26 Teeth w	0.29 vith HF	0.28	0.29 oading	0.29	6.2
135 able 1 Gear	U 11-9 1:	U AGN 2	U IA Ben 1	U ding C 4	U ieomei 1	U try Fac	0.24 ctor J fo	0.29 or 20°, Pinion	0.25 Full-D teeth	0.29 9epth 1	0.26 Teeth w	0.29 vith HF	0.28 PSTC L	0.29 oading	0.29	0.2
135 able 1 Gear teeth	U 11-9 1: P	U AGN 2 G	U IA Ben 1 P	U ding C 4 G	U ieomei 1 P	U try Fac 7 G	0.24 ctor J fo	0.29 or 20°, Pinion	0.25 Full-D teeth 2 P	0.29 0epth 1	0.26 Feeth w	0.29 with HF	0.28 PSTC L	0.29 oading	0.29 3 13 P	0.2
135 able 1 Gear teeth 12	U 11-9 1: P U	U AGN 2 G U	U IA Ben 1 P	U ding C 4 G	U Geomet 1 P	U try Fac 7 G	0.24 ctor J fo	0.29 or 20°, Pinion 11 G	0.25 Full-D teeth	0.29 9epth 1 6 G	0.26 Teeth w	0.29 vith HF	0.28 PSTC L	0.29 oading	0.29 3 13 P	15
135 able 1 Gear teeth 12 14	U 11-9 1: P U U	U AGN 2 G U U	U IA Ben 1 P U	U ding C 4 G U	U Geomet	U try Fac 7 G	0.24 ctor J fo	0.29 or 20°, Pinion 11 G	0.25 Full-D teeth	0.29 9epth 1 6 G	0.26 Feeth w	0.29 vith HF	0.28	0.29 oading	0.29	15
able 1 Gear teeth 12 14 17	U 11-9 1: P U U U	U AGN 2 G U U U U	U IA Ben <u>1</u> P U U	U ding C 4 G U U	U Geomei 1 P	U try Fac 7 G U	0.24 ctor J fo	0.29 or 20°, Pinion 1 G	0.25 Full-D teeth	0.29 9epth 1 6 G	0.26 Teeth w	0.29 vith HP	0.28 PSTC L	0.29 oading	0.29	5 6
Gear teeth 12 14 17 21	U 11-9 1: P U U U U U U	U AGN 2 G U U U U U	U IA Ben 1 P U U U	U ding C 4 G U U U U	U ieomet 1 P U U	U try Fac 7 G U U	0.24 ctor J fo <u>2</u> P	0.29 or 20°, Pinion 11 G	0.25 Full-D teeth	0.29 Depth 1	0.26 Teeth w	0.29 vith HF	0.28 PSTC L	0.29 oading	0.29 3 13 P	15
135 Gear teeth 12 14 17 21 26	U 11-9 1: P U U U U U U U	U AGN 2 G U U U U U U U	U IA Ben U U U U U	U ding C 4 G U U U U U U	U Geome 1 P U U U U	U try Fac 7 G U U U	0.24 ctor J fo <u>2</u> P 0.33 0.33	0.29 or 20°, Pinion 1 G 0.33 0.35	0.25 Full-D teeth 2 P	0.29 0.29 0.29 0.29 0.29 0.29 0.29	0.26 Teeth w	0.29 vith HI	0.28	0.29 oading	0.29	15 4
135 Gear teeth 12 14 17 21 26 35	U 11-9 1: P U U U U U U U U U	U AGN 2 G U U U U U U U U U	U IA Ben U U U U U U U	U ding C 4 G U U U U U U U	U Geomet P U U U U U	U try Fac 7 G U U U U U	0.24 ctor J fo P 0.33 0.33 0.34	0.29 or 20°, Pinion 11 G 0.33 0.35 0.37	0.25 Full-D teeth 2 P 0.35 0.36	0.29 0.29 0.29 0.29 0.29 0.29 0.35 0.35 0.38	0.26 Teeth w	0.29 vith HP	0.28 PSTC L	0.29 oading	0.29	15 0
135 able 1 Gear teeth 12 14 17 21 26 35 55	U 11-9 1: P U U U U U U U U U U	U AGN 2 G U U U U U U U U U U U U U	U IA Ben U U U U U U U U U	U ding C 4 G U U U U U U U U U	U Geomet P U U U U U U U	U try Fac 7 G U U U U U U U	0.24 ctor J fo P 0.33 0.33 0.34 0.34	0.29 pr 20°, Pinion 11 G 0.33 0.35 0.37 0.40	0.25 Full-D teeth 0.35 0.36 0.37	0.29 0.29 0.29 0.29 0.29 0.35 0.35 0.38 0.41	0.26 Feeth w 9 0.39 0.40	0.29 vith HF <u>G</u> 0.39 0.42	0.28	0.29 oading 55 G	0.29	15 4

FIGURE 4.34 – Exemple de facteur J tenant compte de la géométrie de la dent selon l'AGMA [2]. Extrait de la référence [14]

où V_t est la vites se tangentielle au diamètre primitif exprimée en m/s. Les facteurs A et B sont définis comme suit :

$$A = 50 + 56(1 - B)$$

$$B = \frac{(12 - Q_v)^{2/3}}{4} \text{ for } 6 \le Q_v \le 11$$

Le facteur Q_v est relatif à la qualité et du procédé de fabrication des roues dentées.

Ces courbes sont valides en dessous de la vitesse tangentielle maximale :

$$V_{t\,max} = \frac{[A + (Q_v - 3)]^2}{200}$$

Pour les engrenages de qualité $Q_v \leq 5$, la relation suivante remplace les précédentes :

$$K_v = \frac{50}{50 + \sqrt{200V_t}}$$

3/ La contrainte de flexion doit être majorée pour tenir compte d'une **répar**tition inégale de l'effort F_n sur la largeur de la dent : On remplace b

DROITES

FIGURE 4.35 – Facteur Y_F tenant compte de la géométrie de la dent et du déport de denture x

par b' :

$$b' = \frac{b}{K_m} \quad K_m > 1$$

 C_m est une fonction de la qualité de fabrication Q_v .

4/L'effort F_n n'est pas appliqué progressivement mais un **effet de choc** intervient. La fluctuation des contraintes dans la dent provient de la variabilité de la charge. On doit introduire un effort tangentiel majoré :

$$F'_t = F_t K_A \quad K_A > 1$$

Pour estimer K_A on peut soit utiliser l'abaque de Richter-Ohlendorf (4.33) soit le tableau simplifié 4.3.1 suggéré par l'AGMA.

5/ Le facteur de taille K_s est similaire au facteur de taille introduit pour la résistance à la fatigue. Les engrenages de grande taille ont une moindre

FIGURE 4.36 – Facteur K_v tenant compte de la vitesse tangentielle et de la qualité Q_v de fabrication des engrenages. Extrait de la référence [14]

THEFT IS TREETER A APPLICATIONS ITA							
Driven Machine Driving machine	Uniform	Moderate shock	Heavy shock				
Uniform	1.00	1.25	< 1.75				
(electric motor, turbine)							
Light shock	1.25	1.50	< 2.00				
(Multi cylinder engine)							
Medium shock	1.50	1.75	< 2.25				
(Single cylinder engine)							

TABLE 4.3 – Facteur d'applications K_A

résistance. Toutefois, on prend généralement

$$K_s = 1$$

6/ Le facteur d'épaisseur de jante K_B a été introduit récemment par l'AGMA pour tenir compte de situations dans lesquelles un engrenage de grand diamètre est fait d'une jante de faible dimension et de rayons plutôt que d'un tambour solide. On a observé que ceux-ci peuvent périr prématurément à cause des contraintes radiales élevées qui naissent dans la jante et cela bien avant rupture de la dent. Le facteur K_B est donné à la Figure 4.37.

7/ Le facteur K_I reflète le fait que les engrenages sur une roue folle sont soumis à un plus grand nombre de cycles de sollicitation par unité de temps et plus de charges alternées de hautes amplitudes que leurs homologues montés

FIGURE 4.37 – Facteur K_B tenant compte de l'épaisseur et de la rigidité de la jante de la roue dentée. Extrait de la référence [14]

en roues fixes. Pour tenir compte de cette solution, on prend $K_I = 1,25$ pour les roues folles et $K_I = 1,00$ pour les roues fixes.

8/ La contrainte de flexion maximale admissible dépend de la **durée de vie** que l'on veut imposer. La pression devra être comparée à

$$R'_{\phi} = R_{\phi} K_L \quad K_L < 1$$

où R_{ϕ} est l'endurance correspondant à un nombre de cycles de référence et le facteur K_L un facteur de réduction compte tenu du nombre de cycles souhaités.

4.3.2 Résistance à la pression de contact

Le second critère est la résistance de la dent à la pression de contact. On calcule la pression de contact au niveau du flanc des dents puis on la multiplie par une série de coefficients qui tiennent compte de l'engrènement réel.

On compare ensuite cette pression à une valeur limite fonction des caractéristiques mécaniques superficielles du matériau (HB superficielle) et de la durée de vie désirée avant apparition de lésions de surface.

Lorsque deux cylindres élastiques semi-infinis sont appliqués l'un contre l'autre et pressées avec un effort F_n le contact est régi par la théorie de Hertz. Le contact s'établit sur une zone rectangulaire, de largeur 2 l tandis que la pression de contact varie transversalement selon une loi de répartition semi elliptique, caractéristique de la théorie de Hertz.

Matériaux		Éprouvette	à l'état final	Caractéristiques de la denture			
nation M ou MN	Type et traitement thermique	Contrainte de rupture $\sigma_{\rm B}$	Résistance dynamique σ_{fa}	Dureté HB Cœur Flanc	Résistance limite $\sigma_{\rm F \ lim}$	Pression limite P _{H lim}	
	Fonte grise	20 25	9 12	200 210	5 6	36 40	
20	Fonte nodulaire	42 50	19 20	150 170	18 21	35 40	
50 60	Acier moulé	50 60	20 24	140 170	15 17	37 46	
	Aciers de construction au carbone	min. 42 min. 50 min. 60 min. 70	19 24 28 32	125 150 180 210	16 19 21 24	43 50 62 72	
4 Si 5 Mo 4	Aciers d'amélio- ration	50 à 60 65 à 80 75 à 90 75 à 90 70 à 80 95 à 110	22 à 26 30 à 34 34 à 40 36 à 44 36 à 42 46 à 54	140 185 210 260 230 300	19 23 25 30 30 31	41 54 61 77 63 77	
Cr 5 Ni 6	Aciers de cémentation	45 à 60 50 à 65 80 à 110 90 à 120	25 27	170590190740270650310650	20 22 42 44	176 190 192 192	
Si 4 4	Acier pour trempe superficielle	65 à 80 90 à 105 90 à 110		220 595 270 560 275 590	31 34 35	178 165 177	
4 Si 5	Aciers pour cyanuration	140 à 180 150 à 190		460 595 470 550	32 35	178 163	

Tableau LXV Caractéristiques mécaniques des matériaux Toutes les caractéristiques mécaniques sont données en daN/mm²

FIGURE 4.38 – Caractéristiques mécaniques de flexion et de pression de contact admissibles pour une série de matériaux habituels utilisés dans la fabrication des engrenages

On obtient

$$p_{max} = \frac{2P'}{\pi l} \tag{4.69}$$

où $P' = F_n/b$ est la charge normale par unité de longueur selon la largeur de la dent, l est la demi largeur d'empreinte et b est la largeur de contact, ici la largeur de la plus petite des deux roues dentées. (voir Figure 4.40)

DROITES

FIGURE 4.39 – Facteur K_L de modification de la contrainte limite d'endurance à considérer. Extrait de la référence [14]

FIGURE 4.40 – Contact hertzien de deux cylindres convexes

La théorie de Hertz nous enseigne que la longueur de la demi ellipse vaut :

$$l = \sqrt{4P'\rho\left(\kappa_1 + \kappa_2\right)}$$

avec le rayon de courbure équivalent :

$$\frac{1}{\rho} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$$

où ρ_1 et ρ_2 sont les rayons de courbure des surfaces cylindriques représentant

les dents tandis que

$$\kappa_i = \frac{1 - \nu_i^2}{\pi E_i}$$

Posons :

$$\frac{1}{\pi E^{\star}} = \frac{1 - \nu_1^2}{\pi E_1} + \frac{1 - \nu_2^2}{\pi E_2} = \kappa_1 + \kappa_2$$

On a :

$$l = \sqrt{\frac{4P'\rho}{\pi E^{\star}}}$$

Retournons maintenant au calcul de la pression de contact. Il vient :

$$p_{max} = \frac{2 P'}{\pi l} = \frac{2 P'}{\pi} \sqrt{\frac{\pi E^{\star}}{4P'\rho}}$$

Soit après simplifications

$$p_{max} = \sqrt{\frac{P' E^{\star}}{\pi \rho}}$$

En suivant la Ref. [5], on peut montrer en étudiant le profil de denture en développante de cercle que :

$$\rho = \frac{d'_{01}}{2} \cos \alpha' \operatorname{tg} \psi \left[1 - \frac{1}{i+1} \operatorname{tg} \psi \, \cot \alpha' \right]$$

Dans le cas particulier d'un contact au point G, point de contact des deux diamètres primitufs, situé sur la ligne d'entraxe, on a $\alpha' = \psi$:

$$\rho = \frac{d'_{01}}{2} \sin \alpha' \frac{i}{i+1}$$

Ecrivons l'expression de la pression maximale de contact :

$$P' = \frac{F_n}{b} = \frac{F_t}{b\cos\alpha'}$$

Pour un contact en tête de dent, on peut écrire :

$$p_{max} = \sqrt{\frac{F_t E^{\star}}{\pi b \cos \alpha'} \frac{2(i+1)}{d'_{01} \cos \alpha' \operatorname{tg} \psi (1+i - \cot \alpha' \operatorname{tg} \psi)}}$$

Tandis que pour un point de contact sur les diamètres primitifs $(\alpha' = \psi)$:

$$p_{max} = \sqrt{\frac{F_t E^{\star}}{\pi b \cos \alpha'} \frac{2(i+1)}{d'_{01} \sin \alpha' i}}$$

où

$$d_{01}' = d_{01} \frac{\cos \alpha_0}{\cos \alpha'} = Z_1 m \frac{\cos \alpha_0}{\cos \alpha'}$$

Calcul de la résistance à la pression de contact - méthode AGMA

Dans l'approche employée dans la méthode AGMA, on calcule d'abord la pression de contact maximale au point de contact des cercles primitifs en utilisant la théorie de Hertz.

$$p_{max} = \sqrt{\frac{F_t}{b \, d_{01}}} \, \frac{(i+1)}{i} \, \frac{2E^{\star}}{\pi \, \sin \alpha' \, \cos \alpha_0} \tag{4.70}$$

La pression de contact théorique a peu de chance d'exister en réalité du fait des imperfections de la réalisation et du montage. On introduit donc un certains nombre de coefficients.

$$p_{max} = C_p \sqrt{\frac{F_t}{b \, d_0 \, I} \frac{C_a C_m}{C_v} C_s C_f}$$
(4.71)

1/ Le **coefficient** C_p est le coefficient élastique qui rend compte de la différence éventuelle des modules élastiques de la roue et du pignon :

$$C_p = \sqrt{\frac{1}{\pi \left[\frac{1-\nu_1^2}{\pi E_1} + \frac{1-\nu_2^2}{\pi E_2}\right]}}$$

2/ Le facteur I tient compte des **rayons de courbure des dents** en prise et de l'angle de pression et du diamétre primitif :

$$I = \frac{\rho \, \cos \alpha'}{d'}$$

Comme le facteur géométrique J pour la contrainte de flexion, la norme définit soit des tables, soit des abaques permettant de calculer le facteur I en fonction du nombre de dents du pignon et de la roue. Le facteur I est différent du facteur J calculé précédemment.

3/ La pression doit étre majorée pour tenir compte d'un coefficient tenant compte de la **répartition inégale** de l'effort F_n sur la largeur de la dent. On remplace b par b' :

$$b' = \frac{b}{C_m} \quad C_m > 1$$

Le facteur C_m dépend de la qualité de fabrication via la coefficient Q_v .

4/ L'effort F_n n'est pas appliqué progressivement mais un **effet de choc** intervient et on doit introduire un effort tangentiel majoré :

$$F_t' = \frac{F_t}{C_v} \quad C_v < 1$$

Dans la norme AGMA, le facteur C_v est donné par la même expression que K_v décrit pour la résistance à la flexion.

5/ La pression max adimissible dépend de la **durée de vie** que l'on veut imposer. La pression devra étre comparée à

$$R'_{\phi} = R_{\phi} C_L \quad C_L < 1$$

 R_{ϕ} l'endurance correspondant à un nombre de cycles de référence. C_L est une fonction du nombre de cycles.

6/ Un **coefficient de lubrification** tient compte de l'effet de la lubridication, qui a un effet sur la durée de vie.

$$R'_{\phi} = R_{\phi} C_{Lub} \quad C_{Lub} < ou > 1$$

La lubrification a généralement un effet positif sur la durée de vie. Dans la norme AGMA, on utilise la pression hertzienne au point de contact sur le cercle primitif avec les coefficients de correction.

$$p_{max} = \sqrt{\frac{F_t}{b \, d_{01}} \frac{C_a C_m}{C_v} \frac{(i+1)}{i} \frac{2E^{\star}}{\pi \, \sin \alpha' \, \cos \alpha_0}} \le \frac{p_{lim} \, C_L \, C_{Lub}}{K} \quad (4.72)$$

K coefficient de sécurité supplémentaire.

4.4 ENGRENAGES A DENTURE HELICOI-DALE

On peut également concevoir des roues dentées pour lesquelles le profil des dents suit une hélicoïde. La fabrication de tels roues dentées résulte alors d'une mouvement synchronisé du déplacement axial de l'outil de coupe et de la rotation du cylindre brut de l'engrenage. Comme l'indique la Figure 4.41, il en résulte une roue cylindrique dont les dents s'enroulent sur le cylindre primitif. Les dents sont inclinées d'un angle β_0 sur la direction de l'axe de rotation tandis que l'angle d'hélice est le complémentaire de β_0 . Les dentures peuvent être obliques à gauche ou obliques à droite. D'ailleurs les deux roues à dentures hélicoïdales doivent avoir des hélices de sens opposés pour pouvoir s'engrener l'une avec l'autre. L'angle d'hélice est généralement compris entre 8° et 20°.

$$8^{\circ} \leq \beta \leq 20^{\circ}$$

Les engrenages à dentures en chevrons sont composés de deux engrenages jointifs à denture hélicoïdale à angles d'hélice β égaux et opposés. Dans les

FIGURE 4.41 – Géométrie de la roue hélicoïdale

FIGURE 4.42 – Engrenages à dentures hélicoïdales

cas dentures à chevrons, on choisit généralement un angle d'hélice β beaucoup plus élevé compris entre 30° et 44°.

Les roues à dentures hélicoïdales et à chevrons sont utilisées dans le cas de vitesses circonférentielles élevées pour lesquelles les dentures droites ne conviennent plus à cause du bruit et du facteur de charge dynamique trop élevés.

Le grand intérêt de la denture hélicoidale est l'application progressive de l'effort à la dent. Plusieurs dents sont en prise simultanément conduisant à un meilleur recouvrement.

Avantages (par rapport aux dentures droites)

4.4. ENGRENAGES A DENTURE HELICOIDALE

- Toujours plusieurs dents en prise de sorte que l'on a une meilleure régularité de la transmission à haute vitesse.
- Moins d'usure et un niveau sonore plus bas conduisant à une réduction des chocs ds à la plus faible flexion des dents.
- Possibilité de façon précise d'obtenir des entraxes de dimension souhaitée en modifiant l'angle d'hélice.
- Possibilité de transmettre un mouvement entre deux axes orthogonaux non concourants.

Inconvénients

- Plus chère que les dentures droites.
- Création d'une composante axiale de l'effort de contact.
- Impose souvent la mise en place dans les paliers de roulements spécifiques capables de reprendre ce type d'effort.
- Solution possible : inverser le sens de l'hélice sur deux roues dentées portées par un même arbre, ou bien adopter des roues dentées en chevron.

4.4.1 Paramètres fondamentaux des dentures hélicoïdales

La taille d'une roue à denture hélicoidale est obtenue par le moyen d'un outil crémaillère ou de son équivalent (Hobb) décalée d'un angle β_0 , par rapport à la génératrice (axe) de la roue. L'enlèvement de copeaux est obtenu par le mouvement de va-et-vient de l'outil parallèlement aux dents de la crémaillère. Le mouvement d'avance rectiligne de la crémaillère perpendiculairement à l'axe de rotation de la roue est synchronisé avec le mouvement de rotation de cette roue (Voir Figure 4.43).

FIGURE 4.43 – Fabrication des engrenages à dentures hélicoïdales par hobbing par fraise mère

Module et pas apparents

FIGURE 4.44 – Géométrie des dentures hélicoïdales : pas et modules réels et apparents

Les profils sont toujours en développante de cercle mais l'axe des dents est incliné d'un angle β par rapport à l'axe principal du cylindre primitif (voir Figure 4.44). La section réelle est celle perpendiculaire aux flancs des dents. Le pas primitif est le même que celui de la crémaillère pour une denture droite. Le module réel est donc celui qui est lié au pas réel. Il est normalisé et il est donné par celui de la crémaillére de taille :

$$p_r = \pi m_r$$

La section apparente est celle située dans le plan moyen de la roue perpendiculaire à l'axe de rotation. Dans la section apparente, le pas primitif apparent ou tangent p_t est défini par :

$$p_t = \pi m_t$$

Les pas apparents et réels sont liés par la valeur de l'angle d'hélice (voir Figure 4.44) :

$$p_t = \frac{p_r}{\cos\beta_0}$$

Le module apparent est lié au module réel :

$$m_t = \frac{m_r}{\cos\beta_0}$$

On peut encore définir le pas axial p_x comme la distance entre deux flancs correspondants dans un plan de coupe contenant l'axe de rotation

$$p_x = \frac{p_r}{\sin \beta_0}$$

4.4.2 Forces sur la denture hélicoïdale

FIGURE 4.45 – Décomposition des efforts d'engrènement dans le cas d'une denture hélicoïdale

FIGURE 4.46 – Décomposition des efforts d'engrènement dans le cas d'une denture hélicoïdale

Comme dans le cas des dentures droites, l'effort F_n réellement transmis est celui qui est produit nornalement aux flancs des dents. Il vient en conséquence (Figure 4.45)

$$F_r = F_n \sin \alpha_0 \tag{4.73}$$

$$T = F_n \cos \alpha_0 \tag{4.74}$$

 F_r est une force radiale tendant à repousser les roues. La composante T est située à la fois dans le plan normal à la dent et dans le plan tangent au cylindre primitif.

La composante T se décompose à son tour en une partie tangentielle et une autre axiale :

$$F_x = T \sin \beta_0 \tag{4.75}$$

$$F_t = T \cos \beta_0 \tag{4.76}$$

C'est la force tangentielle F_t dans le plan circonférentielle qui est donnée par la puissance :

$$F_t = \frac{\mathcal{P} \, 60}{\pi \, d_0 \, N} \tag{4.77}$$

La composante F_t est tangentielle. Elle est dirigée dans le sens du mouvement pour une roue réceptrice et, à l'opposé, dirigée dans le sens contraire du mouvement pour une roue motrice.

La force normale T au profil dans le plan réel s'obtient à partir de F_t par la relation :

$$T = \frac{F_t}{\cos \beta_0} \tag{4.78}$$

et la composante axiale F_x

$$F_x = T \sin \beta_0 = F_t \tan \beta_0 \tag{4.79}$$

Finalement la force radiale tendant à repousser les engrenages s'obtient par l'expression :

$$F_r = T \tan \alpha_0 = F_t \frac{\tan \alpha_0}{\cos \beta_0}$$
(4.80)

 F_r est toujours diriqé vers le centre de la roue considérée.

La composante F_x dépend du signe de β_0 mais aussi du type de roue, motrice ou réceptrice. L'existence de F_x au niveau de la circonférence primitive

β_0	$\frac{\tan \alpha_0}{\cos \beta_0}$	$\tan \beta_0$
10	0,369	$0,\!176$
15	0,377	0,268
20	0,387	0,364
25	0,401	$0,\!466$
30	0,420	0,577

TABLE 4.4 – Tableau des valeurs pour les composantes axiales et radiales en fonction des angles courants

entraîne l'apparition d'un couple $F_x d_0/2$ qui est repris au niveau des appuis (voir Figure 4.46) par des réactions R_x égales et opposées.

$$R_x.L = F_x \frac{d_0}{2}$$

4.4.3 Angle de pression apparent

L'angle de pression qui correspond à l'inclinaison du profil trapézoïdal de la crémaillère, n'est pas le même dans un plan normal à la denture et dans le plan moyen de la roue.

FIGURE 4.47 – Angle de pression apparent

Coupons les flancs de la crémaillère (Figure 4.47) par un plan normal à la dent (section en traits interrompus) et par un plan perpendiculaire à l'axe de

rotation (section en traits continus) passant par le même point A. Coupons ces plans particuliers par le plan primitif de la crémaillère, matéria1isé par les traits d'axe. On définit ainsi un triangle dont les côtés s_t et s_n sont les demi-pas respectivement contenus dans les plans apparent et normal. Si hmesure la distance entre A et le plan primitif, on peut écrire successivement :

$$s_n = s_t \cos \beta_0$$

$$s_t = h \tan \alpha_{0t}$$

$$s_n = h \tan \alpha_0$$

En éliminant h, s_t et s_n , il vient la proposition :

$$\tan \alpha_{0t} \, \cos \beta_0 \,=\, \tan \alpha_0 \tag{4.81}$$

On peut obtenir la même expression en utilisant les valeurs des modules normaux et apparents,

$$\tan \alpha_{0t} = \frac{\tan \alpha_0}{\cos \beta_0}$$

4.4.4 Dimensions générales des roues

Comme pour les dentures droites, la dent dans le plan normal est normalisée. Les hauteurs et diamètres d'addendum et de dedendum sont donnés en fonction du module normal m_n :

$$h_{a} = 1,00 m_{n} \qquad d_{a} = Z m_{t} + 2m_{n}$$

$$h_{f} = 1,25 m_{n} \qquad d_{f} = Z m_{t} - 2,5m_{n}$$

$$S_{0n} = \frac{\pi m_{n}}{2} \qquad S_{0t} = \frac{\pi m_{t}}{2} = \frac{S_{0n}}{\cos \beta_{0}}$$

En outre, on peut écrire comme pour les dentures droites

$$\pi d_0 = p_t Z$$

 soit

$$d_0 = Z m_t = Z \frac{m_n}{\cos \beta_0}$$

Il s'ensuit que l'entraxe se calcule par la formule

$$a_0 = \frac{d_{01} + d_{02}}{2} = \frac{Z_1 + Z_2}{2 \cos \beta_0} m_n$$

qui montre que la valeur obtenue est rarement un nombre entier de milimètres. Deux solutions pour remédier à ce problème. Soit réaliser un déport de denture adéquat, soit introduire l'angle d'hélice β_0 adéquat qui rend a_0 entier.

4.4.5 Nombre de dents et diamètre primitif de la denture droite équivalente

En première approximation, on peut admettre que la roue circulaire à denture hélicoïdale définit un cylinclre de révolution qui est coupé par un plan perperdiculaire à la direction des dents dans la zone de contact. Etant donné que la section d'un cône par un plan est une ellipse, on est amené à considérer à un tracé elliptique porteur d'une denture droite. Afin de traiter par la suite la roue à denture hélicoidale comme une roue à denture droite fictive, on veut calculer la courbure du cylindre elliptique au niveau de l'engrènement (Figure 4.48).

Le petit axe de l'ellipse n'est pas déformé, il vaut d_0 diamètre primitif de la roue cylindrique. Le rayon de courbure au niveau du petit axe est donc donné par $d_0/2$ le demi diamètre primitif de la roue à denture droite.

Le grand axe de l'ellipse est l'hypothénuse d'un triangle rectangle dont l'angle adjacent à d_0 vaut β_0 , l'angle d'inclinaison des dents (Voir Figure 4.48).

Après calcul [5], on trouve le diamètre virtuel d_v selon le grand et le petit axe de l'ellipse :

$$a = \frac{d_0}{2\cos\beta_0} \qquad b = \frac{d_0}{2}$$

La courbure au niveau du petit axe vaut donc

$$d_v = 2\rho = \frac{d_0}{\cos^2\beta_0}$$

On peut ensuite écrire avec Z_v le nombre de dents virtuel associé à d_v

$$Z_v m_n = d_v = \frac{d_0}{\cos \beta_0} = \frac{Z m_t}{\cos \beta_0}$$

et comme

$$m_t = \frac{m_n}{\cos\beta_0}$$

on tire l'estimation

$$Z_v^{(1)} = \frac{Z}{\cos^3 \beta_0} \tag{4.82}$$

FIGURE 4.48 – Denture droite équivalente

Ceci n'est qu'une première estimation. Une étude plus approfondie de l'engrènement dans la coupe normale permet d'obtenir la vraie valeur de nombre virtuel de dents. Elle donnée par la relation :

$$Z_v^{(2)} = Z \frac{inv(\alpha_{0t})}{inv(\alpha_0)}$$

$$(4.83)$$

Traitons un exemple. Soient les caractéristiques suivantes pour un engrenage à denture hélicoïdale :

$$Z = 20 \text{ dents}$$
$$\alpha_0 = 20^{\circ}$$
$$\beta_0 = 15^{\circ}$$

Il vient

$$Z_v^{(1)} = \frac{20}{\cos^3 15^\circ} = 22,19 \text{ dents}$$

$$\alpha_{0t} = \tan^{-1} \left(\frac{\tan 20^\circ}{\cos 15^\circ}\right) = 20,6469^\circ$$

$$Z_v^{(2)} = 20 \frac{inv(20,6469^\circ)}{inv(20^\circ)} = 22,07 \text{ dents}$$

4.4.6 Déport de dentures hélicoïdales

Tout ce qui a été dit à propos des dentures droites est applicable aux dentures hélicoidales, à condition de considérer la roue droite équivalente :

— Module normalisé m_n :

$$m_n = m_t \cos \beta_0$$

— Angle α_0 :

 $\tan \alpha_0 = \tan \alpha_{0t} \, \cos \beta_0$

— Nombre équivalent de dents :

$$Z_v = \frac{Z}{\cos^3 \beta_0}$$

On peut ainsi écrire par analogie avec les développements introduits au niveau de l'étude du déport des dentures droites (X et x les déports en valeurs absolues et relatives).

$$X = x m_n$$

Les diamètres d'addendum et de dedendumn deviennent

$$d_a = d + 2 m_n + 2 X d_f = d - 2 m_n + 2 X$$

Les demi pas au diamètre primitif valent :

$$S_{0n} = \frac{\pi m_n}{2} + 2 x m_n \tan \alpha_0 \quad \text{(dans plan normal)}$$

$$S_{0t} = \frac{\pi m_t}{2} + 2 x m_n \tan \alpha_{0t} \quad \text{(dans plan moyen)}$$

L'entraxe a_0 est donné par :

$$a \cong a_0 + \frac{(x_1 + x_2) m_n}{\sqrt[4]{1 + 26 \frac{x_1 + x_2}{Z_{1v} + Z_{2v}}}}$$

L'entraxe *a* peut être calculé exactement à partir des caractéristiques de la denture droite équivalente, à condition de négliger la variation de β_0 sur la hauteur de la dent (même "pas" d'hélice, mais développement πd différent).

4.4.7 Longueur de recouvrement d'une denture hélicoïdale. Paramètre de recouvrement

Soit S_p le décalage entre les sections apparentes des dents dans les plans transversaux limitant la largeur de la roue et mesuré dans le plan tangent aux cylindres primitifs des roues en prise (voir Figures 4.41 et 4.49).

On peut écrire

$$S_p = b \tan \beta_0$$

avec β_0 l'angle d'inclinaison des dents dans le plan tangent au cylindre primitif dans la roue.

FIGURE 4.49 – Recouvrement des dentures hélicoïdales

Lorsque le flanc d'une dent en prise au niveau du plan limite de la roue passe du premier point d'approche au dernier point de retraite, on parcourt une distance e_{α} , la longueur de conduite projetée mesurée sur l'intersection d'un plan perpendiculaire à l'axe de rotation et du plan tangent aux cylindres primitifs. Lorsque cette face de la dent dépasse le point de retraite, la face arrière de la dent décalée de S_p par rapport à celle-ci est encore en phase de retraite. Cette situation concerne d'ailleurs une portion plus ou moins inportante de la dent.

On peut dès lors définir la longueur de recouvrement réelle totale comme la la somme de e_{α} , calculée comme dans le cas de dentures droites, i.e.

$$e_{\alpha} = \frac{l}{\cos \alpha_{0t}}$$

et de S_p , décalage linéaire des sections.

Il vient

$$e_{\gamma} = e_{\alpha} + S_{p}$$
$$\epsilon_{\gamma} = \epsilon_{\alpha} + \frac{S_{p}}{p_{t}} = \epsilon_{\alpha} + \frac{b \tan \beta_{0}}{\pi m_{t}}$$

Comme $m_t = m_n / \cos \beta_0$, on a

$$\epsilon_{\gamma} = \epsilon_{\alpha} + \frac{b \sin \beta_0}{\pi m_n} = \epsilon_{\alpha} + \epsilon_{\beta}$$

En général, le paramètre

$$\epsilon_{\beta} = \frac{b \sin \beta_0}{\pi m_n} \approx 1, 2$$

Il en résulte que la taille oblique des dentures améliore considérablement la qualité du recouvrement.

On notera que le rapport de conduite ϵ_{α} est évalué dans le plan moyen de la roue où l'on a un angle de pression tangent α_{0t} .

4.4.8 Résistance des dentures hélicoïdales

Une fois calculés les efforts normaux aux dentures, on peut traiter la résistance des dentures hélicoïdales. C'est l'effort T tangent au cercle primitif qui sollicite la dent en flexion.

Le module est donc choisi tel que

$$m_r \ge 2,34\sqrt{\frac{T}{k R_{\phi}}}$$

$$(4.84)$$

avec

$$b = k m_r \tag{4.85}$$

k choisi entre 6 et 10 afin d'avoir continuité du mouvement. Le module réel m_r est choisi dans les séries des nombres normaux de Renard.

On a donc

Il vient

$$m_t = \frac{m_r}{\cos\beta_0}$$

Pour qu'il y ait continuité, il faut que la roue dentée ait au moins une certaine largeur. Il faut que l'arc parcouru lorsque le contact court le long du flanc de la dent soit plus grand que l'arc du pas apparent.

$$b \tan \beta_0 \ge p_t = \frac{\pi m_r}{\cos \beta_0}$$

Il vient
$$b \ge \frac{\pi m_r}{\sin \beta_0}$$
(4.86)
Pour $\beta_0 = 25^\circ$, on trouve

(4.87)

CONCEPTION ET DIMENSIONNEMENT 4.5**DES ENGRENAGES**

 $b > 7.4 m_r$

Détermination de la géométrie approchée 4.5.1

Dentures droites

Sélection de Z_1 et de d_{01}

On sait que le diamètre primitif d_{01} doit être supérieur au diamètre de pied d_f , d'au moins 2,5 modules m. Assimilant le diamètre de pied soit au diamètre de l'arbre légèrernent majoré (pignon arbré), soit au diamètre extérieur du moyeu (pour un pignon rapporté), on écrira en première approximation :

$$d_{01} - 2, 5 m = d_{01} \left(1 - \frac{2, 5}{Z_1} \right) \ge C \cdot d$$

avec

$$C = 1, 2$$
 pour un pignon arbré
 $C = 1, 8$ pour un pignon rapporté

avec d, diamètre de l'arbre portant le pignon, compte tenu éventuellement d'une rainure de cale si nécessaire. Il en découle la formule :

$$d_{01} \geq \frac{C \cdot d \cdot Z_1}{Z_1 - 2, 5}$$

 d_{01} sera donc déterminé dès que Z_1 sera fixé, ou vice versa.

Le nombre de dents Z_1 peut être choisi en respectant les règles suivantes (DIN)

avec

$$v_0 = \frac{\pi \, d_{01} \, N}{60}$$

On remarque que $Z_1 = 20$ appartient à tous les intervalles; cette valeur est adoptée dans une première itération. Le diamètre primitif d_{01} s'en déduit :

$$d_{01} = \frac{20 C \cdot d}{20 - 2, 5}$$

soit

$$d_{01} = 1,37 d$$
 pour un pignon arbré
 $d_{01} = 2,05 d$ pour un pignon rapporté

On en déduit la valeur du module théorique m^* :

$$m^{\star} = \frac{d_{01}}{Z_1}$$

que l'on normalise à la valeur juste supérieure m dans la série de Renard. Un nouveau diamètre primitif s'en déduit

$$d_{01} = 20 m$$

qui permet de calculer la vitesse v_0 réel1e.

Ce résultat permet d'ajuster le nombre de dents à une valeur supérieure, si nécessaire, tout en maintenant la valeur du module évaluée précédemment.

Un calcul itératif conduit à déterminer :

$$Z_1$$

$$m$$

$$d_{01}$$

$$Z_2 = i Z_1$$

$$d_{02} = Z_2 m$$

$$a_0 = d_{01} \frac{1+i}{2}$$

On admettra une légère erreur sur le rapport de réduction i, typiquement jusque 3 à 5 %, de manière à permettre un choix de Z_1 et de Z_2 qui soient des nombres premiers entre eux. On évitera ainsi le risque d'une usure localisée sur quelques dents seulement.

On note que dans le cas où a_0 et i sont fixés simultanément, d_{01} et d_{02} le sont également. En effet :

$$a_0 = \frac{d_{01} + d_{02}}{2}$$
$$i = \frac{d_{02}}{d_{01}}$$

dont on déduit les solutions du système, d_{01} et d_{02} .

Largeurs du pignon b_1 et de la roue b_2

Les largeurs b_1 et b_2 sont choisies dans un premier temps en respectant les règles de bonne pratique suivantes.

a) La largeur b_2 de la roue est plus faible que celle du pignon b_1 sauf dans le cas de pignon arbré.

$$b_2 = 0,9 b_1 \qquad b_1 - b_2 \le 5 mm$$

b) La largeur du pignon b_1 doit être choisie de manière à conduire à des paramètres ψ_d et ψ_m compatibles avec l'application :

Valeur du paramètre $\psi_d = b_1/d_{01}$

— Faible vitesse $(v_0 < 1 m/s)$, denture et pivoterie de qualité moyenne (roue folle, crabotage) :

$$\psi_d = 0,23 + 0,0857 i$$

— Vitesse moyenne (entre $\sim 1 m/s < v_0 < 5 m/s$), denture et pivoterie de bonne qualité normale.

$$\psi_d = 0,50 + 0,0857 \, i$$

— Grande vitesse et durée de vie élevée ; denture et pivoterie très soignées $(v_0 \simeq 5 m/s \text{ et plus}).$

$$\psi_d = 0,80 + 0,0857 i$$

— Très grande vitesse $(v_0 \gg 5 m/s)$, durée de vie élevée; la meilleure précision pour l'ensemble.

$$\psi_d = 1,20 + 0,0857 i$$

Valeur du paramètre $\psi_M = b_1/m \ (\psi_m = 15 \text{ en moyenne})$

— Denture coulée, de mauvaise qualité.

$$8 < \psi_m < 10$$

 Denture soignée mais problème de parallélisme, déformée d'arbre (roue en porte-à-faux).

$$10 < \psi_m < 15$$

— Denture soignée et parallélisme très correct.

 $15 < \psi_m < 30$

— Meilleure qualité de denture, appui très rigide et excellent parallélisme.

 $30 < \psi_m$

c) Les valeurs b_{1m} et b_{1d} sont généralement différentes. On adoptera alors leur moyenne dans les calculs ultérieurs.

Dentures hélicoïdales

La méthode développée pour la denture droite est valable jusqu'au calcul du module apparent

$$Z_1$$

 d_{01}
 $m_t = \frac{d_{01}}{Z_1}$ non normalisé

La largeur de la dent b_1^\prime doit toujours être supérieure à la largeur b_2^\prime de la roue

$$b'_1 > b'_2$$

La largeur du pignon est ensuite choisie en fonction des paramètres ψ_m et ψ_d , d'écriture modifiée.

$$\psi_m = \frac{b_1}{m_t}$$
$$\psi_d = \frac{b_1}{d_{01}}$$

On notera que ψ_m ne peut dépasser 30 quand β_0 est supérieur à 25°.

La norme DIN permet ensuite de déterminer l'inclinaison provisoire des dents β_0 en fixant temporairement $\epsilon_{\beta} = 1.2$ dans une première étape du calcul :

$$\epsilon_{\beta} = \frac{S_p}{p_t} = \frac{b_2 \tan \beta_0}{\pi m_t} = \frac{0.9 b_1 \tan \beta_0}{\pi m_t} = 1.2$$

et partant de là :

$$\beta_0 = \tan^{-1} \left(3.5 \, \frac{m_t}{b_1} \right)$$

que l'on arrondit à un nombre entier de degrés.

On en déduit la valeur du module normal théorique m^* que l'on normalise à la valeur supérieure.

$$m_n^\star = m_t \cos \beta_0 \le m_n^{\mathrm{ISO}}$$

Toute la géométrie sera recalculée en adoptant ce module normalisé et la valeur arrondie de β_0 :

$$Z_{1}$$

$$m_{t} = \frac{m_{n}}{\cos \beta_{0}}$$

$$d_{01} = Z_{1} m_{t}$$

$$d_{02} = i d_{01}$$

$$Z_{2} = i Z_{1}$$

$$a_{0} = d_{01} \frac{1+i}{2}$$

$$b_{1} = 3.5 \frac{m_{t}}{\tan \beta_{0}} \quad \text{et} \quad b_{1}' = \frac{b_{1}}{\cos \beta_{0}}$$

$$b_{2}' = \frac{b_{1}'}{1.1} \quad \text{et} \quad b_{2} = \frac{b_{1}}{1.1}$$

Le calcul de la vitesse périphérique v_0 au cercle primitif va permettre d'ajuster le nombre de dents. L'angle d'hélice β_0 peut être modifié ultérieurement de manière à conduire à un entraxe fixé à l'avance.

$$a_0 = \frac{Z_1 m_n}{\cos \beta_0} \frac{1+i}{2}$$

4.5.2 Méthode simplifiée de dimensionnement selon l'ISO

Domaine d'application

Cette méthode permet le dimensionnement rapide des engrenages pour un avant-projet. Elle s'applique aux engrenages dont la géométrie est conforme aux normes ISO.

Les cas envisagés sont ceux de la mécanique générale, de la grosse mécanique et des engrenages à grande vitesse.

Pression de contact

Le regroupement des facteurs de la méthode générale ISO permet d'écrire :

$$a^{3} \geq \frac{K_{A} \mathcal{P}}{k n_{1} Z_{N}^{2}} \frac{(u \pm 1)^{3}}{u} K_{i}$$
(4.88)

avec

- \mathcal{P} la puissance à transmettre en kW,
- -a l'entraxe en mm,
- K_A le facteur d'application donné au Tableau de la Figure 4.50,
- *b* la largeur de denture,
- -k le rapport b/a entre la largeur de denture et l'entraxe,
- Z_N le facteur de Whöler,
- u le rapport d'engrenage $u = Z_2/Z_1$
- K_i un facteur tenant compte du type d'engrenage, des matériaux, de la vitesse au diamètre primitif, de la qualité des dentures,
- n_1 la fréquence de rotation en Hz.

On considère u + 1 dans le cas d'un engrenage extérieur et u - 1 pour un engrenage intérieur.

Flexion de la dent

$$Z_1 \le Z_\infty \, \frac{u \, \pm \, 1}{u} \tag{4.89}$$

Valeurs des coefficients

Les calculs ci-dessus demandent la connaissance des coefficients K_A , Z_N , K_i et Z_{∞}

$A/Facteur d'application K_A$

On considère les facteurs d'application suivants donnés au tableau ci-dessous avec les conditions suivantes :

- A : moteur électrique ou turbine
- B : moteur polycylindrique
- C : moteur monocylindrique
- I : machine menée sans chocs
- -II : machine menée avec chocs modérés
- III : machine menée avec chocs caractérisés
- a : jusqu'à 12 heures de fonctionnement par jour
- b : plus de 12 heures de fonctionnement par jour

]	Ľ	I	I	III		
	а	b	a	b	a	b	
A	1	1,16	1,25	1,45	1,5	1,75	
В	1,25	1,45	1,5	1,75	1,75	2,25	
С	1,5	1,75	1,75	2,25	2,25	2,85	

FIGURE 4.50 – Valeurs du facteur d'application K_A

B/ Facteur de Whöler Z_N

On choisira un nombre H d'heures de fonctionnement souhaitées et on calculera :

$$N = 3,6 H n_1 10^{-4} (4.90)$$

Si $N \ge 1$, on aura

 $Z_N = 1$

Si N < 1, on calculera

$$Z_N = (N)^{-0.1}$$

C/ Facteur de pression superficielle K_i
	I	I II III		IV				
	ĸ	z	ĸ	z_∞	ĸ	z_∞	ĸ	z_
v < 5 m/s	1,60.104	21	2,95.104	28	3,31.104	29	4,05.104	30
5 < v < 10 m/s	1,76.104	21	3,24.104	28	3,77.104	30	4,63.104	29
10 < v < 15 m/s	1,88.104	21	3,43.104	28	4,15.104	31	5,16.104	32
15 < v < 30 m/s	1,98.104	21	3,65.104	27	4,63.104	31	5,79.104	32
30 < v < 50 m/s	2,16.104	22	3,95.104	27	-	-		-
Pour les denture	es droites	s, muž	ltiplier K i	par 1	1,4 et Z pa	ar 1,2	2	

FIGURE 4.51 – Valeurs des facteurs K_i et Z_{∞} - Mécanique générale

Ce facteur est donné dans les Tableaux 4.51 à 4.53 rédigés en mm^2/N .

Le tableau de la Figure 4.51 est relatif aux *engrenages de la mécanique générale*. Les nomenclatures I, II, III et IV sont relatives aux cas suivants :

- I Pignon et roue en acier cémenté trempé. Rectification Qualité 5 et 6.
- II Pignon comme I, roue en acier allié traité pour 350 HB. Rectification. Qualités ISO 5 et 6.
- **III** Pignon comme roue en II, roue en acier allié 270 brinell Usinage soigné par génération Qualité ISO 6 et 7.
- IV Pignon en acier allié 270 HB, roue en acier allié 225 HB Usinage soigné - Qualité ISO 6 et 7.

Les dentures sont généralement hélicoïdales et parfois droites. Dans ce dernier cas, multiplier les valeurs de K_i par 1,4 et z_{∞} par 1,2.

Les largeurs de dentures ne dépasseront pas le diamètre du pignon, surtout quand la qualité diminue. Les valeurs moyennes de k sont 0,35 avec une variation de 0,2 à 0,5. La valeur de k sera d'autant plus petite que u est grand. On prendra aussi une plus faible largeur pour les dentures droites. Pour celles-ci, on doit limiter v à 5 m/s.

Le tableau 4.52 est relatif à la grosse mécanique.

I Pignon en acier allié traité pour 350 HB, roue en acier allié 270 HB.

II Pignon en acier 270 HB et roue en acier 225 HB.

Les qualités d'exécution sont moins fines (ISO 7 à 10), les modules sont grands et les vitesses limitées. On prendra les valeurs de k proches de 0,25. On prendra $K_A = 1,75$ et plus.

	I		II		
	ĸ	z _∞	ĸ _i	z_{∞}	
Denture en chevron v < 5	2,31.104	20	-	-	
Denture en chevron v < 10	2,64.104	23	3,54.104	25	
Denture droite v < 5	3,31.104	23	4,51.104	27	

FIGURE 4.52 – Valeurs des facteurs K_i et Z_∞ - Grosse mécanique. A appliquer avec $K_A \geq 1.75$

	I		II		III		IV	
	ĸ	z_∞	ĸ	z_∞	ĸ	z_∞	ĸ	z _o
Qualité ISO 4	1,84.104	23	3,37.104	36	3,76.104	40	4,62.104	40
Qualité ISO 5,6	2,84.104	25	5,22.104	36	5,78.104	40	7,04.10 ⁴	40

FIGURE 4.53 – Valeurs des facteurs K_i et Z_{∞} - Engrenages à grande vitesse

Le tableau de la Figure 4.53 est relatif aux engrenages à grande vitesse.

Les roues sont hélicoïdales simples avec un angle d'hélice faible ou modéré.

La construction est très rigide. Elles sont massives. La qualité est fine (ISO 4 à 6). La préférence est accordée aux solutions permettant un assez grand nombre de dents. Les largeurs de denture sont souvent supérieures au diamètre primitif du pignon (b de 1 à 1,5 d_{01}). On prend des valeurs de k de 0,35 (pour un rapport de réduction u grand) à 0,5 (rapport u petit). La forme des dents après rectification tiendra compte des dilatations et déformations en service qui donneront alors la forme théorique.

- I Pignon et roue en acier de cémentation, cémenté et trempé.
- II Pignon cémenté et trempé, roue en acier allié 350 HB.
- III Roue en acier 270 HB, pignon en acier allié 350 HB.
- IV Pignon en acier 210 HB, roue en acier 225 HB. Denture en chevron de haute qualité.

D/ Nombre de dents limite Z_{∞}

Ceux-ci sont donnés au sein dans des Tableaux des Figures 4.51 à 4.53 en regard des facteurs de pression superficielle.

4.5.3 Exemples d'application de la méthode ISO simplifiée

Exercice 1 : denture droite

Enoncé

Calculez par la méthode ISO simplifiée l'engrenage d'un réducteur entraîné par moteur électrique (sans chocs) à 16 Hz, d'une puissance nominale de $\mathcal{P} = 300 \, kW$, avec une réduction de 4 (± 3 %) et destiné à un motoriser un treuil de traction utilisé 8 heures par jour. Durée de vie souhaitée 20.000 heures.

On suppose que l'on prend des engrenages droits de classe IV de mécanique générale avec ou non déport de denture pour une plus grande résistance. On impose un module m = 8. On adoptera un angle de pression standard $\alpha_0 = 20^\circ$. En outre le rapport k entre l'entraxe et la largeur de dent vaudra 0,35.

Déterminer les caractéristiques des engrenages Z_1 , Z_2 , a, X_1 , X_2 et α' .

Solution

La **pression de contact** permet de déterminer l'entraxe. Le regroupement des facteurs de la méthode ISO permet d'écrire :

$$a^{3} = \frac{K_{A} \mathcal{P}}{k n_{1} Z_{N}^{2}} \frac{(u \pm 1)^{3}}{u} K_{i}$$

avec

- \mathcal{P} la puissance à transmettre en kW,
- -a l'entraxe en mm,
- n_1 la fréquence de rotation en Hz,
- K_A le facteur d'application,
- *b* la largeur de denture,
- k le rapport b/a entre la largeur de denture et l'entraxe ,
- Z_N le facteur de Wöhler,
- u le rapport d'engrenage $u = Z_2/Z_1$
- K_i un facteur tenant compte du type d'engrenage, des matériaux, de la vitesse au diamètre primitif, de la qualité des dentures.

L'évaluation de toutes les données permet de déterminer :

- $\mathcal{P}=300 \text{ kW},$
- $n_1 = 16$ Hz,
- k = b/a = 0.35,

- u = 4.

Pour déterminer le facteur d'application de la charge, on utilise le tableau de la Figure 4.50. On a un moteur électrique (A), l'opération se passe sans choc (I) et le fonctionnement a lieu 8 heures par jour (a). Il vient donc

$$K_A = 1$$

Pour le facteur de Wöhler, on considère le fait que le treuil travaille 8 heures par jour à une fréquence de 16 Hz. Il vient

$$N = 3,6 * 20.000 * 16 * 10^{-4} = 115, 2 \ge 1$$

On prend donc

 $Z_N = 1$

On détermine maintenant le facteur K_i .

Pour cela on fait l'hypothèse que la vitesse périphérique est comprise entre 5 et 10 m/s, quitte à revenir après sur celle-ci.

$$5 \leq v \leq 10 \, m/s$$

Ainsi avec un engrenage à denture de droite de classe IV de mécanique générale, le Tableau de la Figure 4.51 fournit :

$$K_i = 4,63 \ 10^4 \ * \ 1,4$$

. Le facteur 1,4 provient du fait que l'on a une denture droite. De même, pour le $Z_\infty,$ on a

$$Z_{\infty} = 29 * 1, 2 = 34, 8$$

Il vient la valeur de l'entraxe minimale :

$$a^3 \ge \frac{1\,300}{0,35\,*\,16\,*\,1,0^2} \,\frac{5^3}{4}\,*\,6,482\,10^4 = 108.515.625$$

 soit

$$a \ge 476, 98 \,\mathrm{mm}$$

On peut déterminer maintenant le **nombre de dents** en résolvant deux équations

$$a = \frac{d_{01} + d_{02}}{2} = \frac{m}{2}(Z_1 + Z_2) \ge 477$$
$$\frac{Z_2}{Z_1} = 4$$

214

Or on impose

m = 8

ce qui conduit à

$$(Z_1 + Z_2) \ge 119, 25$$

 $\frac{Z_2}{Z_1} = 4$

Soit

$$Z_1 \ge 23.85$$

On prend

$$Z_1 = 24$$

Si on prend $Z_1 = 24$ dents alors

$$Z_2 = 24 * 4 = 96$$

On doit prendre Z_1 et Z_2 premiers entre eux de sorte qu'on ajoute une unité à Z_2 .

$$Z_2 = 97$$

On calcule maintenant **l'entraxe réel** résultant du nombre de dents choisis :

$$a_0 = (Z_1 + Z_2)\frac{m}{2} = (24 + 97)\frac{8}{2} = 484 \text{ mm}$$

Calculons également les diamètres primitifs des deux roues dentées

$$d_{01} = Z_1 m = 24 * 8 = 192 mm$$
$$d_{02} = Z_2 m = 97 * 8 = 776 mm$$

Vérifions maintenant l'hypothèse de départ qui supposait que la vitesse était dans l'intervalle $5 \le v \le 10 m/s$.

$$v = \pi d_{01} n_1 = \pi 192 \ 10^{-3} * 16 = 9,65 \ m/s$$

ce qui rentre bien dans le cadre de notre hypothèse. Si ce n'était pas le cas, on effectuerait un cycle supplémentaire en partant de la vitesse trouvée maintenant.

Vérifions à présent si le **critère de flexion** de la dent est également vérifié.

$$Z_1 \le Z_\infty \, \frac{u+1}{u}$$

On injecte les valeurs courantes

$$Z_{\infty} = 29 * 1, 2 = 34, 8$$
 $Z_1 = 24$ $u = 4$

et on trouve,

$$Z_1 \le 34, 8 \, \frac{4+1}{4} = 43, 5$$

Ce qui valide la démarche.

Calculons maintenant les **déports** X_1 et X_2 .

Un déport conduisant à une grande résistance nécessite

$$x_1 + x_2 = 0, 9$$

avec x = X/m.

A partir de ce point de départ, on fixe x_1 au moyen de la relation :

$$x_1 = \lambda \, \frac{Z_2 - Z_1}{Z_2 + Z_1} + (x_1 + x_2) \, \frac{Z_1}{Z_1 + Z_2}$$

Avec

 $\lambda = 0, 6$

on trouve

$$x_1 = 0, 6 \frac{97 - 24}{24 + 97} + 0, 9 \frac{24}{24 + 97} = 0,5405$$

On en déduit

$$x_2 = (x_1 + x_2) - x_1 = 0, 9 - 0, 5405 = 0, 3595$$

Calculons le nouvel entraxe,

$$a = a_0 + \frac{(x_1 + x_2) m}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{Z_1 + Z_2}\right)}} = 484 + \frac{0,9 * 8}{\sqrt[4]{1 + 26\left(\frac{0,9}{24 + 97}\right)}} = 490,89 mm$$

Calculons maintenant l'angle de pression après déport

$$\operatorname{inv}(\alpha') = \operatorname{inv}(\alpha_0) + 2 \frac{x_1 + x_2}{Z_1 + Z_2} \tan \alpha_0$$
$$= 0,0149 + \frac{2 * 0,9}{24 + 97} \tan 20^\circ = 0,0203$$

En inversant la fonction involute

$$\operatorname{inv} \alpha' = \tan \alpha' - \alpha' = 0,0203$$

donne

$$\alpha' = 22^{\circ}$$

4.5. CONCEPTION ET DIMENSIONNEMENT DES ENGRENAGES 217

Exercice 2 : denture droite et entraxe fixé

Enoncé

Calculez par la méthode ISO simplifiée l'engrenage d'un réducteur entraîné par moteur électrique (sans chocs) à 16 Hz, d'une puissance nominale de $\mathcal{P} = 300 \, kW$, avec une réduction de 4 (± 3 %) et destiné à un motoriser un treuil de traction utilisé 8 heures par jour. Durée de vie souhaitée 20.000 heures.

On prend des engrenages à denture droite. L'entreaxe est fixé à 400 mm. On adopte un angle de pression standard $\alpha_0 = 20^\circ$. En outre le rapport k entre l'entraxe et la largeur de dent vaudra 0,35.

Déterminer les caractéristiques des engrenages Z_1 , Z_2 , m, X_1 , X_2 et α' . Fixer la classe de matériau à utiliser.

Solution

L'entraxe étant fixé

$$a = 400 mm$$

nous allons déterminer la classe du matériau à utiliser.

L'équation de la pression de contact donne :

$$a^{3} \geq \frac{K_{A} \mathcal{P}}{k n_{1} Z_{N}^{2}} \frac{(u \pm 1)^{3}}{u} K_{i}$$

Si on utilise les coefficients déterminés de manière identique à l'exercice 1, on trouve

$$400^3 \geq \frac{1,0 * 300,0}{0,35 * 16 * 1^2} \frac{(4+1)^3}{4} K_i$$

 soit

$$K_i \le 27306$$

En se référant au Tableau de la Figure 4.51, pour des engrenages à denture droite de mécanique générale, cela correspond à des **engrenages de classe** I pour lesquels on a

$$K_i = 1,76 \ 10^4 \ * \ 1,4 = 24.640$$

On choisit donc un pignon et une roue en acier cémenté trempé, avec rectification pour atteindre une qualité 5 ou 6 ISO. Vérifions maintenant la tenue à la flexion. Pour des engrenages à denture droite de classe I, on a

$$Z_{\infty} = 21 * 1, 2 = 25, 2$$

On insert cette valeur dans l'équation de la résistance à la flexion

$$Z_1 \le Z_\infty \, \frac{u+1}{u}$$

et on trouve,

$$Z_1 \le 25, 2\,\frac{4+1}{4} = 31, 5$$

On calcule maintenant les caractéristiques de la denture comme dans l'exercice 1.

$$a = \frac{d_{01} + d_{02}}{2} = \frac{m}{2}(Z_1 + Z_2) = 400$$
$$\frac{Z_2}{Z_1} = 4$$

On se donne cette fois un nombre de dents sur le pignon

$$Z_1 = 25$$

ce qui conduit à

$$\frac{m}{2}(25+4 \ * \ 25) = 400$$

 soit

$$m = 6, 4 mm$$

On doit prendre m dans la série normalisé de Renard qui comprend soit les valeurs 6 et 8. On choisit de prendre la plus proche soit

m = 6

Comme on a diminue le module, on doit recalculer le nombre de dents qui correspond à cette nouvelle valeur du module. On détermine alors les **nombres de dents** Z_1 et Z_2 de manière définitive :

$$(Z_1 + Z_2)\frac{6}{2} \le 400$$
$$\frac{Z_2}{Z_1} = 4$$

On trouve

$$Z_1 = 26$$

et on prend Z_2 premier vis-à-vis de Z_1

$$Z_2 = 26 * 4 + 3 = 107$$

Calculons les diamètres primitifs des deux roues dentées

$$d_{01} = Z_1 m = 26 * 6 = 156 mm$$
$$d_{02} = Z_2 m = 107 * 6 = 642 mm$$

Vérifions maintenant l'hypothèse de départ qui supposaient que la vitesse était dans l'intervalle $5 \le v \le 10 m/s$.

$$v = \pi d_{01} n_1 = \pi 156 \ 10^{-3} * 16 = 7,84 \ m/s$$

ce qui confirme notre hypothèse.

Calculons les déports $x_1 + x_2$ qui réaliseront exactement notre entraxe de a=400 mm. On calcule d'abord **l'entraxe réel** résultant du nombre de dents choisis :

$$a_0 = (Z_1 + Z_2)\frac{m}{2} = (26 + 107)\frac{6}{2} = 399 \text{ mm}$$

On réalise un déport pour atteindre la valeur de 400 mm. L'équation de l'entraxe après déport nous donne :

$$a = a_0 + \frac{(x_1 + x_2) m}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{Z_1 + Z_2}\right)}}$$

= 399 + $\frac{(x_1 + x_2) * 6}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{26 + 107}\right)}}$ = 400 mm

La solution de l'équation donne

$$x_1 + x_2 = 0,175$$

A partir de ce résultat, on fixe x_1 au moyen de la relation :

$$x_1 = \lambda \, \frac{Z_2 - Z_1}{Z_2 + Z_1} + (x_1 + x_2) \, \frac{Z_1}{Z_1 + Z_2}$$

Avec

$$\lambda = 0, 6$$

on trouve

$$x_1 = 0, 6 \frac{107 - 26}{26 + 107} + 0,175 \frac{26}{26 + 107} = 0,3996$$

On en déduit

$$x_2 = (x_1 + x_2) - x_1 = 0,175 - 0,3996 = -0,2246$$

Calculons maintenant l'angle de pression après déport

$$\operatorname{inv}(\alpha') = \operatorname{inv}(\alpha_0) + 2 \frac{x_1 + x_2}{Z_1 + Z_2} \tan \alpha_0$$

= 0,0149 + $\frac{2 * 0,175}{26 + 107} \tan 20^\circ = 0,0159$

En inversant la fonction involute, on obtient

$$\alpha' = 20, 5^{\circ}$$

Exercice 3 : denture hélicoïdale et entraxe fixé

Enoncé

Calculez par la méthode ISO simplifiée l'engrenage d'un réducteur entraîné par moteur électrique (sans chocs) à 16 Hz, d'une puissance nominale de $\mathcal{P} = 300 \ kW$, avec une réduction de 4 (± 3 %) et destiné à un motoriser un treuil de traction utilisé 8 heures par jour. Durée de vie souhaitée 20.000 heures.

On considère des engrenages hélicoïdaux de mécanique générale. On choisit un angle d'hélice $\beta_0 = 20^{\circ}$ L'entraxe est fixé à 450 mm.

Déterminer les caractéristiques des engrenages Z_1 , Z_2 , m_n , X_1 , X_2 , α . Fixer la classe de matériau à utiliser.

Solution

Faisons l'hypothèse d'une vitesse primitive comprise entre 5 et 10 m/s. Dans ce cas l'engrenage restera un engrenage de mécanique générale.

On utilise les tableaux pour extraire les valeurs de coefficients de l'équation de la pression de contact :

$$a^{3} \geq \frac{K_{A} \mathcal{P}}{k n_{1} Z_{N}^{2}} \frac{(u \pm 1)^{3}}{u} K_{i}$$

On trouve

220

$$\begin{array}{l} - \ \mathcal{P} = 300 \ \mathrm{kW} \\ - \ u = 4 \\ - \ n_1 = 16 \ \mathrm{Hz} \\ - \ k = 0.35 \\ - \ K_A = 1.0 \ \mathrm{a} \ \mathrm{partir} \ \mathrm{du} \ \mathrm{Tableau} \ 4.50 \end{array}$$

 $-Z_N = 1,0 \text{ car}$

$$N = 3, 6.20.000 \cdot 16 \, 10^{-4} = 115, 2 > 1$$

Si on utilise les coefficients ainsi déterminés, on trouve

$$450^3 \geq \frac{1,0 * 300,0}{0,35 * 16 * 1,0^2} \frac{(4+1)^3}{4} K_i$$

On déduit :

$$K_i \le 54.432$$

Cette valeur correspondent à un engrenage hélicoïdal de classe IV de mécanique générale. En effet si on suppose que la vitesse tangentielle est comprise entre 5 et 10 m/s, on trouve dans le Tableau de la Figure 4.51:

$$K_i = 4,63\ 10^4$$

 et

$$Z_{\infty} = 29$$

Contrairement aux exercices 1 et 2, il n'y pas de coefficients multiplicateur car l'engrenage est à denture hélicoïdale.

L'équation de résistance à la flexion nous donne

$$Z_1 \le 29 \, \frac{4+1}{4} = 33,74$$

Le calcul des caractéristiques de la denture peut maintenant être réalisé. Nous avons un système de deux équations

$$a = \frac{d_{01} + d_{02}}{2} = \frac{m_n}{2} \frac{Z_1 + Z_2}{\cos \beta_0} = 450$$
$$\frac{Z_2}{Z_1} = 4$$

En se donnant $Z_1 = 25$ dents,

$$\frac{m_n}{2} \frac{(25+4 * 25)}{\cos 20^\circ} = 450$$

nous en déduisons un module normal de

$$m_n = 6,77 \ mm$$

On choisit de prendre la valeur normale la plus proche soit

$$m_n = 6$$

On doit recalculer le nombre de dents qui correspond à cette nouvelle valeur du module. On détermine alors les **nombres de dents** Z_1 et Z_2 de manière définitive :

$$\frac{(Z_1 + Z_2)}{\cos 20^\circ} \frac{6}{2} \le 450$$
$$\frac{Z_2}{Z_1} = 4$$

On trouve

 $Z_1 = 28$

et on prend Z_2 premier vis-à-vis de Z_1

$$Z_2 = 28 * 4 - 1 = 111$$

On vérifie maintenant la validité de notre hypothèse de vitesse tangentielle. On calcule d'abord le diamètre primitif

$$d_{01} = \frac{m_n}{\cos\beta_0} Z_1 = 178,78 \ mm$$

La vitesse tangentielle est donnée par

$$v = \pi d_{01} n_1 = \pi 178, 78 \ 10^{-3} * 16 = 8,9866 \ m/s$$

Pour la largeur de l'engrenage, on prend d'abord la valeur moyenne k=0,35

$$b = 450.0, 35 = 157, 5 mm$$

que l'on arrondi à

$$b = 158 mm$$

Calculons les déports $x_1 + x_2$ qui réaliseront exactement notre entraxe de a=450 mm. On calcule d'abord **l'entraxe réel** résultant du nombre de dents choisis :

$$a_0 = \left(\frac{Z_1 + Z_2}{\cos \beta_0}\right) \frac{m_n}{2} = (28 + 111) \frac{6}{2} = 443,7 \text{ mm}$$

222

4.5. CONCEPTION ET DIMENSIONNEMENT DES ENGRENAGES 223

On réalise un déport pour atteindre la valeur de 450 mm. L'équation de l'entraxe après déport nous donne :

$$a = a_0 + \frac{(x_1 + x_2) m_n}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{Z_{v_1} + Z_{v_2}}\right)}}$$

= 443, 7 + $\frac{(x_1 + x_2) * 6}{\sqrt[4]{1 + 26\left(\frac{x_1 + x_2}{Z_{v_1} + Z_{v_2}}\right)}} = 450 mm$

avec

$$Z_{v1} = \frac{Z_1}{\cos\beta_0} = 33,74$$

 et

$$Z_{v2} = \frac{Z_2}{\cos\beta_0} = 133,77$$

On en déduit la somme des déports :

$$x_1 + x_2 = 1, 1$$

A partir de ce résultat, on fixe x_1 au moyen de la relation :

$$x_1 = \lambda \frac{Z_{v2} - Z_{v1}}{Z_{v2} + Z_{v1}} + (x_1 + x_2) \frac{Z_{v1}}{Z_{v1} + Z_{v2}}$$

Si on prend

$$\lambda = 0, 6$$

on trouve

$$x_1 = 0, 6 \frac{133, 77 - 33, 74}{133, 77 + 33, 74} + 0,175 \frac{33, 74}{33, 74 + 133, 77} = 0,58$$

On en déduit

$$x_2 = (x_1 + x_2) - x_1 = 1, 10 - 0, 58 = 0, 52$$

Calculons maintenant l'angle de pression après déport

$$\operatorname{inv}(\alpha') = \operatorname{inv}(\alpha_0) + 2 \frac{x_1 + x_2}{Z_{v1} + Z_{v2}} \tan \alpha_0$$

= 0,0149 + $\frac{2 * 1,10}{33,74 + 133,77} \tan 20^\circ = 0,01968$

En inversant la fonction involute, on obtient

$$\alpha' = 21, 5^{\circ}$$

4.5.4 Méthode de dimensionnement selon l'AGMA

Dans une série de normes, l'AGMA propose une approche de dimensionnement des engrenages. On suit ici la norme AGMA - 218.01.

L'AGMA permet de vérifier les dentures contre deux types de ruptures :

- 1. La rupture des dentures à la pression de surface.
- 2. La rupture des dentures en flexion.

Dans les deux cas la formule proposée est exprimée en fonction de la puissance transmise entre le pignon et la roue.

Puissance transmise à la pression superficielle (pitting)

$$P_{ac} = \frac{n_p F}{1,91\ 10^7} \frac{I C_v}{C_{SF}} \left[\frac{d S_{ac}}{C_p}\right]^2$$
(4.91)

Puissance transmise à la flexion (rupture)

$$P_{at} = \frac{n_p F}{1,91\,10^7} \frac{J K_v}{K_{SF}} dS_{at} m$$
(4.92)

Les coefficients sont définis par les normes AGMA [1, 2]

- S_{ac} et S_{at} sont les contraintes admissibles en MPa données aux Figures 4.56 et 4.57,
- P_{ac} et P_{at} sont les puissances transisibles limites à la pression de contact et en flexion exprimées en kW,
- $-N_p$ est la vitesse de rotation du pignon en tr/min,
- F est la largeur de la roue, l'élément le plus étroit, en mm,
- I et J sont les facteurs géométriques définis par l'AGMA pour les concentrations de contraintes que l'on peut déterminer grâce notamment aux Figures 4.54 et 4.55
- d le diamètre du pignon en mm. Il est donné par

$$d = \frac{2 a}{i \pm 1}$$

avec a l'entraxe, i le rapport de réduction (¿1). Le signe + est à considérer pour les dentures extérieures tandis que l'on prend le signe - pour les dentures intérieures,

- $-m = m_n / \cos \beta_0$ est le module apparent en mm pour les dentures hélicoïdales,
- C_{SF} et K_{SF} sont les facteur de service donnés par l'abaque de Richter-Ohlendorff à défaut d'autres données plus précises,
- C_v et K_v les facteurs dynamiques donnés par des abaques ou les formules :

$$C_v = K_v = \left[\frac{A}{A + \sqrt{200 v_t}}\right]^B$$
$$B = \frac{(12 - Q_v)^{0,667}}{4}$$
$$A = 50 + 56 (1 - B)$$
$$v_{t max} = [A + (Q_v -)]^2 / 200$$

avec Q_v la qualité de la denture ($6 \leq Q_v \leq 11$)

 $-C_p$ est le coefficient élastique donné par

$$C_p = \left[\pi \left\{\frac{1-\mu_P^2}{E_P} + \frac{1-\mu_R^2}{E_R}\right\}\right]^{-1/2}$$

4.5.5 Exercices Méthode AGMA

Exercice 1 : denture droite

Enoncé

Soit à transmettre 110 kW via un réducteur (i = 4) à engrenages à denture droite. L'arbre d'entrée tourne à 500 tr/min. Le pignon est calé sur l'arbre. Recherchez les caractéristiques de l'engrènement (Z_1 , Z_2 , d_{01} , d_{02} , m, b_1 , b_2) et faites un choix de matériau pour le pignon. Entraînement par moteur électrique, démarrage moyen. Chocs raisonnables, 16 h/jour, durée de vie 50 000 heures. Utilisez la norme AGMA.

Solution

Caractéristiques du pignon et de la roue

On calcule d'abord les caractéristiques de l'engrenage.

Pour un pignon rapporté, on a

$$d_{01} - 2, 5 m = d_{01} \left(1 - \frac{2, 5}{Z_1} \right) \ge C d$$

Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth

FIGURE 4.54 – Facteur géométrique J

avec C = 1, 8 car on est face à un pignon rapporté.

En prenant un nombre de dents au pignon valant $Z_1 = 20$, nous pouvons déduire la valeur minimale que doit avoir le diamètre primitif en fonction du diamètre de l'arbre :

$$d_{01} = 2,05.d$$

FIGURE 4.55 – Facteur géométrique I pour la pression de contact

Connaissant la puissance et la vitesse de rotation, on calcule d par la formule

Antorial	AGMA Class	Commercial Designation	Heat Treatment	Minimum Hardness at Surface	s _{ac} , lb/in²	(MPa)	
			Through	180 BHN	85-95 000	(590- 660)	
teel	A-1		Hardened	& less		(770 790)	
	*h.~**		and	240 BHN	105-115 000	(830- 930)	
	thru		Tempered	300 BHN	120-135 000	(1 000-1 100)	
	4-5		(Fig. 14)	360 BHN	145-160 000	(1 100-1 200)	
	A-3			400 BHN	155-170 000	(1 100 1 200)	
			Flame* or	50 HRC	170-190 000	(1 200-1 300)	
			Induction	54 HRC	175-195 000	(1 200-1 300)	
			Hardened*				
			Carburized*	55 HRC	180-200 000	(1 250-1 400)	
			& Case	60 HRC	200-225 000	(1 400-1 550)	
			Hardened*				
			That delive	AR HRC	155-180 000	(1 100-1 250)	
		AISI 4140	Nitrided	46 HRC	150-175 000	(1 050-1 200)	
		AISI 4340	Nimided	60 HRC	170-195 000	(1 170-1 350)	
		Nitralloy 135M	Nicided	54 HRC	155-172 000	(1 100-1 200)	
		23% Chrome	Nigided	60 HRC	192-216 000	(1 300-1 500)	
		213% Chrome	Nitrioed		50, 60 000	(340-410)	
Cast	20		As Cast	175 DUN	65- 75 000	(450-520)	
Inn	30		As Cast	175 BIIN	75- 85 000	(520-590)	
	40		As Cast	200 8111			
	A.7.3	60-14-18	Annealed	140 BHN	90-100% 01		
Nodular	A-7-C	80-55-06	Quenched		Sec Value		
(Lucule)			& Tempered	180 BHN	OI SICCI		
lion	A-7-d	100-70-03		230 BHN	with same		
	A-7-e	120-90-02		270 BHN	natoness	(100)	
		45007		165 BHN	72 000	. (500)	
Malleable	A-8-C	50005		180 BHN /	78 000	(340)	
Iron	A-8-6	\$3007		195 BHN	83 000	(370)	
(Pearlitic)	A-8-1	80007		240 BHN	94 000	(630)	
	A-0-1	100012	Sand Cast	Tensile	30 000	(205)	
	Bronze	AGMA	Salid Cast	Strength			
	2	20		Minimum			
				40 000 lb/in ²			
Bronze				(275 MPa)			
				Tensile	65 000	(450)	
	Al/Br	ASTM	Heat	Strength			
	3	B-148-52	Ireated	Minimum			
		Alloy 9C		90 000 lb/in2			
				(620 MPa)-			
The second of a	lowable stress D	umbers indicated, may b	e used with the case	depths prescribed in par	graph 14.2		

Railing the Fitting Resistance and Bending Strength of Spur and Helical Involute Gear Teeth

FIGURE 4.56 – Caractéristiques mécaniques des aciers

des arbres de manège. Le rapport P/N étant inférieur à l'unité, nous avons :

$$d_n[mm] = 130 \sqrt[n]{\frac{p[kW]}{N[tr/min]}} = \sqrt[4]{\frac{110}{500}} = 89,03 \, mm$$

Diamètre extérieur de l'arbre (habillage) :

 $d = 89 + 2t_1 = 89 + 210 = 109 mm$

Dès lors :

$$d_{01} = 2,05\ 109 = 223,45\ mm$$

	AGMA	Commercial	Heat Treatment	Minimum Hardness Surface	Core	s _{et} , ib/in ²	(MPa)
aterial	erial Class Designation		Through	180 BHN		25-33 000	(170-230)
el	A-1		Hardened	240 BHN		31-41 000	(210-280)
			and	300 BHN		36-47 000	(230-320)
	thru		Tempered	360 BHN		40-52 000	(200-300)
	·		(Fig. 15)	400 BHN		42-56 000	(210-380)
	A-3		Flame or	50-54 HRC		45-55 000	(310-300)
			Induction				
			Hardened*				
			With Type A				
			Pattern (Fig. 16)			22.000	(150)
		and the second	Flame or			22 000	(1.5.1.)
			Induction				
			Hardened				
			With Type B				
			Pattern (Fig. 16)			55.65 000	(380-450
			Carburized*	55 HRC		55.70 000	(380-480
			& Case	60 HRC	_	JJ-10 000	•
		Hardened*		And BUIL	24.45.000	(230-310	
	AISI 4140	Nitrided*†	48 HRC	300 BHN	36 17 000	(250-325	
	A1ST 4340	Nitrided*†	46 HRC	300 BHN	18 48 000	(260-330	
	Nitralloy 135M	Nitrided*†	60 HRC	300 BHN	45 65 000	(380-450	
	215% Chrome	Nitrided*†	54-60 HRC	350 BHI	5 000	(35)	
			As Cast			8 500	(69)
Cast	20		As Cast	175 BHN		13 000	(90)
ron	30		As Cast	200 BHN		00-1005 of	
	40	60-40-18	Annealed	140 BHN		r for	
Nodular	1.7.6	80-55-06	Quenched			steel of	
(Ductile)	A-7-C		& Tempered 180 BHN same h			same hardne	55
Iron	A-7-d	100-70-03		230 BHN	_		
	A-7-e	120-90-02		270 BHN		10 000	(70)
	A.8.0	45007		165 BHN		13 000	(90)
Maileable	A.8.0	50005		180 BHN	_	16 000	(110)
Iron	A-8-f	53007		195 BHN		21 000	(145)
(Pearlitic)	A-8-i	80002		240 BHN		5 700	(40)
	Prote	AGMA	Sand Cast	Tensile			
2	2C '	Sand Cast	Strength				
			Minimum	1			
-				40 000 10/11			
Bronze				(275 MFL)		21 600	(160)
	1100-	ASTM	Heat	Tensile		25 000	
	AUBr	B-148-52	Treated	Strength			
3	Alloy 9C		Minimum				
		Anojve		90 000 lb/ir	14		
				(620 MPa)			
				leaths prescribed in p	aragraph 14.2		

Rating the Pitting Resistance and Bending Strength of Spur and Helical Involute Goor Teeth

FIGURE 4.57 – Caractéristiques mécaniques des aciers

On en déduit le module théorique :

$$m^{\star} = \frac{d_{01}}{Z_1} = \frac{223, 45}{20} = 11,1725 \, mm$$

Il est normalisé à

$$m = 12$$

Nous recalculons la valeur du diamètre primitif correspondant au module normalisé :

$$d_{01} = 20\,12 = 240\,mm$$

On calcule ensuite les caractéristiques de la roue dentée.

$$Z_2 = Z_1 i = 204 = 80$$

En bonne pratique, on choisit deux nombres premiers entre eux pour minimiser l'usure même si on commet une petite erreur de rapport de réduction. On prend donc

$$Z_2 = 79 \text{ dents}$$

L'entraxe a_0 est de :

$$a_0 = \frac{d_{01} + d_{02}}{2} = \frac{Z_1 + Z_2}{2} m = Z_1 m \frac{1+i}{2}$$

= 594 mm

Largeur des dents

On va calculer le ratio

$$\psi_d = \frac{b_1}{d_{01}}$$

On peut calculer la vitesse tangente au diamètre primitif

$$v_t = \frac{\pi d_{01} N}{60} = 6,28 m/s$$

On utilise donc la formule :

$$\psi_d = 0.8 + 0.0857 i = 0.8 + 0.0857 \frac{79}{20} = 1.1385$$

Il vient

$$b_1 = \psi_d \, d_{01} = 1,1385 \, 12 \, 20 = 273,24 \, mm$$

D'autre part on doit avoir

$$b_2 = 0,9 b_1 = 246 mm$$

Si $b_1 - b_2 \leq 5 mm$ alors on doit garder la valeur de b_2 . Sinon, et c'est notre cas, on prend

$$b_2 = b_1 - 5 mm = 268 mm$$

Vérification à la résistance à la flexion et à la pression de contact et choix du matériau

La denture sera vérifiée en écrivant l'équation de la puissance maximale transmissible respectivement à la pression superficielle (pitting) et à la flexion.

La norme AGMA définit les contraintes admissibles via la puissance maximale transmise à la pression (pitting)

$$\mathcal{P}_{ac} = \frac{N_p F}{1,91\ 10^5} \frac{I \ C_v}{C_{SF}} \left[\frac{d \ S_{ac}}{C_p}\right]^2$$

De même la norme définit la puissance maximale transmise à la flexion (rupture)

$$\mathcal{P}_{at} \;=\; \frac{N_p F}{1,91\;10^5} \, \frac{J \, K_v}{K_{SF}} \, d \, S_{at} \, m$$

Calculons la contrainte admissible maximale à la pression de contact.

— Vitesse de rotation au pignon.

$$N_p = 500 \ tr/min$$

— Largeur de la roue (élément le plus étroit);

$$F = 268 mm$$

— Rapport de réduction;

i = 3,95

— Facteur service suivant Richter Ohlendorf

$$C_{sf} = 2.0$$

— Facteur géométrique I. Il est déterminé à partir de la figure A_2 B (voir Figure 4.55) avec $Z_1 = 20$; $Z_2 = 79$. Il vient

$$I = 0,108$$

— Le diamètre primitif de la roue dentée (pignon ou de la roue)

$$d = \frac{2 a}{1+i} = \frac{2 \, 594}{1+3,95} = 240 \, mm$$

— C_v : Facteur dynamique. Il dépend des coefficients A et B par la relation :

$$C_v = K_v = \left[\frac{A}{A + \sqrt{200 V_t}}\right]^B$$

où

$$B = \frac{(12 - Q_v)^{0.667}}{4}$$

avec Q_v , la qualité de la denture comprise entre 6 et 11 et

$$V_t = 6.28m/s \ < = V_t^{max} = \frac{[A + (Q_v - 3)]^2}{200} = 23.83 \ m/s$$

 et

$$A = 50 + 56 (1 - B)$$

Lorsque nous prenons une denture de qualité $Q_v = 7$, on trouve

$$B = 0,7314$$
 $A = 65,04$

et donc

$$C_v = 0,7275$$

 $- C_p$ Coefficient élastique.

$$C_{p} = \left[\pi \left(\frac{1-\nu_{P}^{2}}{E_{P}} + \frac{1-\nu_{R}^{2}}{E_{R}}\right)\right]^{-1/2}$$

Avec, pour l'acier : $\nu_P = \nu_R = 0, 3$ et $E_P = E_R = 217500 MPa$. Soit

$$C_p = 195$$

En considérant les valeurs de toutes les grandeurs, nous pouvons écrire pour la pression superficielle :

$$110 < \frac{500\ 268\ 0,\ 108\ 0,\ 7275}{1,\ 91\ 10^7\ 2} \left(\frac{240\ S_{ac}}{195}\right)^2$$
$$110 < 0,\ 000417495\ S_{ac}^2$$

On trouve que la contrainte maximale de pression du matériau doit être au moins égale à :

$$S_{ac} \geq 513, 3 MPa$$

En ce qui concerne la résistance à la flexion :

— Vitesse de rotation au pignon.

$$N_p = 500 \ tr/min$$

— Largeur de la roue (élément le plus étroit)

$$F = 268 mm$$

— Rapport de réduction

$$i = 3,95$$

232

— Facteur service suivant Richter Ohlendorf

$$K_{sf} = 2.2$$

— K_v : Facteur dynamique. Il est identique à C_v

$$K_v = 0,7275$$

— Facteur géométrique J. On Il est déterminé à partir de la figure B1 (voir Figure 4.54) avec $Z_1 = 20$; $Z_2 = 79$. Il vient

$$J = 0,34$$

En considérant les valeurs de toutes les grandeurs, nous pouvons écrire pour la contrainte maximale de la flexion :

$$110 < \frac{500\ 268\ 0, 34\ 0, 7275}{1,91\ 10^7\ 2, 2}\ 240\ S_{at}\ 12$$

On trouve que la contrainte maximale à la flexion du matériau doit être au moins égale à :

$$S_{at} \geq 48, 42 MPa$$

Avec les valeurs des contraintes S_{ac} et S_{at} et à l'aide des tables 4.56 et 4.57, nous pouvons choisir l'acier A1.

Exercice 2 : denture droite

Enoncé

Soit à transmettre 55 kW via un réducteur (i = 4) à engrenages à denture droite. L'arbre d'entrée tourne à 500 tr/min. Le pignon est un pignon arbré. Recherchez les caractéristiques de l'engrènement $(Z_1, Z_2, d_{01}, d_{02}, m, b_1, b_2)$ et faites un choix de matériau pour le pignon. Entraînement par moteur électrique, démarrage moyen. Chocs raisonnables, 16 h/jour, durée de vie 50 000 heures. Utilisez la norme AGMA.

Solution

Exercice 3 : denture hélicoïdale

Enoncé

Un pignon à denture hélicoïdale calé en bout d'arbre, entraîne une roue dont les caractéristiques sont : m = 4, $Z_2 = 91$, $b_2 = 45 mm$, $\alpha_0 = 20^\circ$, $\beta_0 = 20^\circ$, $N_2 = 750 tr/min$. La puissance reçue par la roue vaut 100 kW. Un moteur électrique entraîne le pignon ($N_1 = 3000 tr/min$) par l'intermédiaire d'un accouplement qui ne transmet que de la torsion. On demande de choisir les caractéristiques du pignon (Z_1 , b_1 , d_{01}) et de vérifier la fixation du pignon sur l'arbre. L'entraînement par le moteur électrique se fait selon un démarrage moyen, chocs raisonnables, 16h/jour, durée de vie 50.000 heures. Utilisez la norme AGMA.

Solution

On calcule d'abord les caractéristiques du pignon.

$$i = \frac{3000}{750} = 4$$

Ce qui donne

$$Z_1 = \frac{Z_2}{i} = \frac{91}{4} = 22,75$$

On adopte

$$Z_1 = 23$$
 dents

Le rapport de réduction réel est :

$$i_{\text{r\'eel}} = \frac{91}{23} = 3,956$$

soit une erreur de 1, 1 %.

On calcule le module tangent :

$$m_t = \frac{m_n}{\cos \beta_0} = \frac{4}{\cos 20^\circ} = 4,257$$

Soit le diamètre primitif du pignon :

$$d_{01} = m_t Z_1 = 4,257 23 = 97,9 mm$$

On en déduit la vitesse tangente au niveau du diamètre primitif

$$v = \frac{\pi d_{01} N}{60} = \frac{\pi 97,9 \, 10^{-3} \, 3000}{60} = 15,38 \, m/s$$

234

4.5. CONCEPTION ET DIMENSIONNEMENT DES ENGRENAGES 235

Cette vitesse est comprise entre 20 et 25 m/s de sorte que pour un nombre de dents égal $Z_1 = 23$, on peut calculer :

$$\epsilon_{\beta} = \frac{b_2 \tan \beta_0}{\pi m_t} \ge 1,22$$

 $b_2 > 1, 2 \frac{\pi m_t}{\tan \beta_0} = 44,09 \, mm$

On choisit

$$b_2 = 45 mm$$

On trouve

$$b_1 = 1, 1 b_2 = 49, 5 mm$$

On finit par calculer l'entraxe :

$$a_0 = \frac{Z_1 m_n}{\cos \beta_0} \frac{1+i}{2} = \frac{23.4}{\cos 20^\circ} \frac{1+3,956}{2}$$
$$= 214,23 mm$$

236

Chapitre 5

TRANSMISSIONS PAR COURROIE ET POULIES

5.1 GENERALITES

FIGURE 5.1 – Applications industrielles des transmission par courroie. Source Extremultus

Les courroies sont des liens flexibles utilisés pour transmettre des puissances moyennes entre arbres parallèles ou non, séparés généralement par des distances d'entraxes importantes.

Ce lien flexible s'enroule à la périphérie de poulies respectivement menante (ou motrice) et menée (ou réceptrice) calées sur chaque arbre. La courroie transmet les efforts tangentiels d'une manière conservative ou non suivant

238 CHAPITRE 5. TRANSMISSIONS PAR COURROIE ET POULIES

le type de système envisagé, c'est-à-dire en préservant ou non l'égalité des efforts périphériques Q.

Ce transfert de puissance ne peut néanmoins s'opérer sans un effet d'adhérence efficace au contact des jantes. Une résistance suffisante au glissement d'ensemble n'apparaîtra dès lors qu'à la condition d'imposer une contrainte initiale de traction dans les brins de la courroie. Il en résulte que cette tension initiale qui doit être développée artificiellement dépend essentiellement de la puissance à transmettre et qu'elle doit croître avec elle.

Les courroies utilisées en pratique présentent une section transversale soit rectangulaire mince (courroies plates), soit trapézoidale (de type normal ou étroit). Les dimensions des sections habituelles sont normalisées.

FIGURE 5.2 – Applications industrielles des transmission par courroie au début de l'ère industrielle. Source Extremultus

La solution par courroie s'est développée très tôt à l'époque industrielle du fait de nombreux avantages qu'elle propose.

Les avantages des transmissions par courroies sont les suivants :

- Entraxe élevé;
- Bon rendement;
- Fonctionnement silencieux;
- Construction et montage simples;
- Entretien aisé et fonctionnement sans lubrification;
- Prix de revient raisonnable;
- Amortissement partiel des chocs, des à-coups et des vibrations grâce à l'élasticité de la courroie et le frottement interne de la matière;
- Normalisation des dimensions des poulies et des largeurs des courroies (suite des nombres de Renard de la série R_{20})pour les courroies plates);
- Possibilité de créer une variation de vitesse par des montages utilisant des poulies étagées ou coniques.

5.1. GENERALITES

Des inconvénients doivent être également cités :

- Encombrement important;
- Risques d'accident plus importants que d'autres systèmes tels que les engrenages;
- Charges radiales généralement élevées sur arbres et paliers d'appui;
- Rapport de réduction non rigoureux, par suite du glissement élastique de la courroie sur les jantes de la poulie;
- Sensibilité à l'humidité, à la température et à la poussière.

A début de l'ére industrielle, les machines fonctionnaient à des vitesses angulaires relativement faibles (quelques centaines de tours par minute). Elles disposaient de volants d'inertie de grandes dimensions propices à la réalisation de poulies et devaient transmettre leur mouvement à des machines réceptrices situées à grandes distances.

Les courroies d'abord plates ont été remplacées progressivement par des courroies à section trapézoïdale pour suivre l'augmentation de la vitesse de rotation et de la puissance des machines.

Aujourd'hui les distances entre le moteur et le récepteur sont souvent faibles, car on assigne un moteur par axe ou par fonction. Les puissances et les vitesses de rotation des systèmes de transmission sont de plus en plus élevées, rendant plus difficile le choix clair entre engrenages et poulies modernes.

Il faut remarquer qu'une même courroie peut entraîner plusieurs récepteurs par exemple la pompe à eau et l'alternateur sur un moteur à piston. Même si cette situation était courante dans le temps, cette situation tend à disparaître de nos jours.

L'évolution des technologies apportées aux courroies a permis d'apporter des réponses aux principales critiques qui leur étaient souvent faites :

- Augmentation de la puissance transmise par la mise en oeuvre de matériaux plus performants comme les matériaux synthétiques, composites ou métalliques;
- Emploi de courroies multiples ou poly-trapézoïdales;
- Rigueur du rapport de transmission par usage de courroies crantées synchrones.

Il est actuellement possible de concevoir des transmissions par courroie capable de transmettre des puissances allant jusque 400 kW ainsi que des vitesses linéaires au-delà de 60 m/s.

En ce qui concerne le rendement d'une transmission par courroie, la littérature mentionne généralement que l'on puisse atteindre une valeur proche de 98 % pour le type plat, et proche de 96 % pour le type trapézoïdal.

FIGURE 5.3 – Applications industrielles des transmission par courroie dans l'industrie moderne.

La qualité et le rendement d'une transmission par courroie sont étroitement liés à la précision de position des poulies lors du montage.

Les pertes de puissance dans la transmission par courroie ont pour origine les phénomènes suivants :

- Le glissement élastique ou le glissement d'ensemble de la courroie sur les poulies;
- Le frottement interne de la matière constitutive de la courroie, lors de l'alternance de l'incurvation, de l'extension et de la relaxation (phénomène d'hystérésis);
- La résistance de l'air au mouvement de la courroie, des poulies et des galets;
- Les pertes par frottement au niveau des appuis.

Les pertes supplémentaires qui apparaissent dans le cas des courroies trapézoidales résultent d'une transmission non conservative des efforts tangentiels aux jantes : une part de l'effort transmis est utilisée pour l'extraction des courroies hors de leur gorge à la sortie des poulies, l'effet de coin ayant tendance à les y maintenir bloquées au-delà du point de tangence théorique.

Dispositions des poulies

On peut réaliser des transmission du mouvement de rotation par courroies et poulies quelles que soient les positions des arbres d'entrée et de sortie. On distingue deux grands cas de figures représentés à la figure 5.4.

FIGURE 5.4 – Disposition des poulies.

FIGURE 5.5 – Configurations à axes parallèles des poulies.

Lorsque les arbres sont parallèles (voir Figure 5.5), le sens de rotation des

poulies est préservé sauf si on croise la courroie.

Dans le cas d'une inversion du sens de rotation si on utilise une courroie croisée, le frottement entre les brins de la courroie est souvent préjudiciable à sa durée de vie.

Arbres à axes quelconques

FIGURE 5.6 – Configurations à axes quelconques des poulies.

Dans une configuration à axes quelconques (voir Figure 5.6), on utilise des poulies folles de renvoi assurant l'entrée et la sortie de la courroie hors du plan de chacune des poulies motrices et réceptrices.

5.2 FORMULES FONDAMENTALES

5.2.1 Définitions et relations de base

La Figure 5.7 présente la géométrique d'une transmissions par courroie sans tendeur entre deux arbres et poulies à axes parallèles. La poulie motrice est repérée par l'indice 1. La poulie réceptrice est notée 2. On note respectivement par ω_1 (N_1) et ω_2 (N_2) les vitesses de rotation qui les animent en radians par seconde ou en tours par minutes, par R_1 (d_1) et R_2 (d_2) leur rayon et diamètre primitifs.

Supponsons que la courroie épouse parfaitement les poulies tout au long des arcs d'enroulement. L'arc sur lequel s'enroule la courroie au niveau de la jante de la poulie s'appelle *l'arc embrassé*. Notons par Ω_1 l'arc embrassé sur

FIGURE 5.7 – Transmission par courroie entre deux axes parallèles

la poulie 1 et par Ω_2 celui sur la grande poulie. Pour autant que la tension dans la courroie soit suffisante, la courroie suit la tangente commune aux deux poulies. Les parties de la courroie qui sont à l'air sont dénommées *brins*. La distance entre les deux axes des poulies est appellé *entraxe* et il est noté par a ou EA.

On appelle α l'angle fait par le brin avec l'horizontale. Il est également lié à l'angle embrassé sur les poulies :

$$\Omega_1 = \pi - 2\alpha \tag{5.1}$$

 et

$$\Omega_2 = \pi + 2\alpha \tag{5.2}$$

Les brins tendus A_1A_2 et mous B_1B_2 de la courroie sont supposés rectilignes. Ces hypothèses supposent que la raideur en flexion de la courroie est faible et que les tensions T et t dans les brins tendus ou mous sont élevées devant les actions transversales. En particulier le poids propre de la courroie est supposé négligeable.

Longueur de la courroie

La longueur théorique de la courroie s'obtient en ajoutant aux longueurs des segments A_1A_2 et B_1B_2 , les longueurs des arcs A_1B_1 et A_2B_2 .

La longueur des brins vaut

$$A_1A_2 = B_1B_2 = a\,\cos\alpha$$

Les longueurs des arcs d'enroulement autour des poulies valent respectivement

$$A_1 B_1 = \frac{d_1}{2} \Omega_1 = \frac{d_1}{2} (\pi - 2\alpha)$$
$$A_2 B_2 = \frac{d_2}{2} \Omega_2 = \frac{d_2}{2} (\pi + 2\alpha)$$

Par ailleurs, la valeur de l'angle α peut être calculé par la relation (voir Figure 5.7) :

$$\sin \alpha = \frac{d_2 - d_1}{2 a} \tag{5.3}$$

On trouve la longueur de courroie L :

$$L = 2 a \cos \alpha + \pi \frac{d_1 + d_2}{2} + 2 \alpha \frac{d_2 - d_1}{2}$$
(5.4)

L'angle α étant souvent petit, il est commo de d'utiliser une formule approchée.

$$\alpha \simeq \sin \alpha = \frac{d_2 - d_1}{2 a}$$

 $\cos \alpha = \sqrt{1 - \sin^2 \alpha} \simeq 1 - \frac{\alpha^2}{2} = 1 - \frac{1}{2} \frac{(d_2 - d_1)^2}{4 a^2}$

Il vient

$$L = 2 a \left[1 - \frac{1}{2} \frac{(d_2 - d_1)^2}{4 a^2} \right] + (\pi - 2 \alpha) \frac{d_1}{2} + (\pi + 2 \alpha) \frac{d_2}{2}$$

Après simplification, on peut écrire la formule donnant une estimation approchée de la longueur de la courroie L en fonction de l'entraxe a:

$$L \simeq 2a + \pi \frac{d_2 + d_1}{2} + \frac{(d_2 - d_1)^2}{4a}$$
 (5.5)

En règle générale, cette longueur théorique de courroie calculée par la relation (5.4) est différente de la longueur réelle puisque la courroie est prise parmi les valeurs standards proposées dans les catalogues. Celles-ci sont généralement choisies en fonction des séries de Renard.

5.2. FORMULES FONDAMENTALES

Rapport de réduction idéal

Les guidages de deux poulies sont supposés parfaitement rigides et sans frottement.

Le moteur développe sur la poulie 1 une puissance \mathcal{P}_1 , un couple C_1 et une vitesse de rotation $\omega_1 = N_1 \frac{\pi d_1}{60}$. L'organe récepteur absorbe une puissance \mathcal{P}_2 , un couple C_2 et tourne à une vitesse $\omega_2 = N_2 \frac{\pi d_2}{60}$.

La conservation de la puissance s'écrit :

$$\mathcal{P}_1 = C_1 \,\omega_1 = \mathcal{P}_2 = C_2 \,\omega_2 \tag{5.6}$$

On en tire le rapport de réduction idéal i du système :

$$\frac{\omega_1}{\omega_2} = \frac{C_2}{C_1} = i$$
 (5.7)

Définissons v la vitesse de déplacement de la courroie au niveau des roues 1 et 2. La caractéristique d'une courroie est de transmettre (de façon idéalisée) sa vitesse tangentielle aux poulies :

$$v_1 = \omega_1 \frac{d_1}{2} = v_2 = \omega_2 \frac{d_2}{2} \tag{5.8}$$

Cette hypothèse permet d'écrire le rapport de réduction idéal

$$\frac{\omega_1}{\omega_2} = \frac{C_2}{C_1} = \frac{d_1}{d_2} = i \tag{5.9}$$

5.2.2 Rendement global et rapport de réduction réel

Soit la géométrie de la transmission schématisée à la Figure 5.8.

On a supposé en première approximation que la transmission de puissance s'effectuait de manière idéale, c'est-à-dire que la puissance et que les efforts étaient préservés. En réalité la variation de tension de la courroie le long de l'arc d'enroulement sur chacune des poulies provoque une variation de sa déformation et il est à l'origine d'un phénomène de glissement permanent. Ce glissement fonctionnel ne doit pas être confondu avec le patinage éventuel de la courroie sur l'une des poulies en cas de surcharge. Le glissement fonctionnel introduit une variation du rapport de réduction qui est une fonction croissante du couple transmis. Il peut atteindre 2 à 3% du rapport théorique.

FIGURE 5.8 – Transmission par courroie

Le glissement permanent est en réalité nécessaire au bon fonctionnement d'une transmission par courroie car il régularise l'évolution de la tension dans la courroie lors de son passage sur les poulies.

Le glissement fonctionnel justifie également la recherche d'une certaine qualité des états de surface des jantes ou des gorges des poulies ainsi que l'emploi de revêtements résistants à l'usure sur les courroies.

On définit par η_0 le rendement global du système de transmission. Ce rendement peut être décomposé en deux parties : η_g le rendement de glissement et η_e le rendement d'extraction de la courroie hors de la gorge de la poulie.

On peut écrire la conservation de la puissance au rendement près :

$$\mathcal{P}_1 = \frac{\mathcal{P}_2}{\eta_0} \quad \text{avec} \quad \eta_0 = \eta_g \eta_e \tag{5.10}$$

Notons Q_1 et Q_2 respectivement les efforts périphériques sur les poulies responsables respectivement du couple développé ou absorbé. On peut écrire :

$$\mathcal{P}_{1} = C_{1} \omega_{1} = Q_{1} v_{1} = Q_{1} \frac{d_{1}}{2} \omega_{1} = \frac{Q_{1} \pi d_{1} N_{1}}{60}$$
$$\mathcal{P}_{2} = C_{2} \omega_{2} = Q_{2} v_{2} = Q_{2} \frac{d_{2}}{2} \omega_{2} = \frac{Q_{2} \pi d_{2} N_{2}}{60}$$

Dans le cas de courroies plates, on a égalité des efforts périphériques Q_i dans les brins à l'entrée et à la sortie des poulies. Par contre dans le cas de
poulies trapézoïdales, on doit exercer un effort d'extraction à la sortie de la poulie et on a une diminution de l'effort Q_i :

 $Q_1 = Q_2$ Cas des courroies plates $Q_1 > Q_2 = \eta_e Q_1$ Cas des courroies trapézoïdales

Divisant membre à membre, on obtient :

$$\frac{\mathcal{P}_2}{\mathcal{P}_1} = \eta_0 = \eta_g \eta_e = \frac{Q_2 \, d_2 \, N_2}{Q_1 \, d_1 \, N_1}$$

Comme

$$\frac{Q_2}{Q_1} = \eta_e$$

on obtient le *rapport de réduction réel* des vitesses (définition cinématique du rapport de réduction) :

$$\frac{N_1}{N_2} = i_r = \frac{1}{\eta_g} \frac{d_2}{d_1}$$

Le rapport de réduction réel i_r est donc toujours supérieur au simple rapport i des diamètres qui définit le rapport de réduction idéal :

$$\frac{i_r}{i} = \frac{1}{\eta_g} \qquad \text{avec} \quad i = \frac{d_2}{d_1} \tag{5.11}$$

5.3 ETUDE DYNAMIQUE

5.3.1 Effort périphérique équivalent

On base les développements qui vont suivre sur les schémas de la Figure 5.9. Supposons que l'on travaille dans un régime de vitesse établi. Les vitesses de rotation des poulies, respectivement ω_1 et ω_2 , sont stationnaires et constantes.

Les tensions dans les brins tendus et mous sont respectivement notés par T et t. Une poulie motrice ou réceptrice développe un effort périphérique équivalent Q, par l'intermédiaire de la courroie de section S couvrant un angle Ω de la jante. Il produit le couple C au rayon primitif R de la courroie :

$$C = Q R \tag{5.12}$$

Compte tenu de l'équilibre de la poulie, on obtient la relation entre les efforts T et t développés respectivement dans le brin tendu et le brin mou de la courroie et le couple dévéloppé ou absorbé par la poulie

$$C = (T - t) R (5.13)$$

De manière équivalente, on voit que l'effort périphérique équivalent Q vaut la différence des efforts dans les brins tendus et mous :

$$Q = T - t \tag{5.14}$$

On remarque que si on écrit ces relations pour les deux poulies,

$$C_1 = (T - t) R_1 C_2 = (T - t) R_2$$

on retrouve le *mechanical advantage* de la transmission qui est aussi le rapport de réduction (définition statique du rapport de réduction) :

$$\frac{C_2}{C_1} = \frac{R_1}{R_2} = \frac{1}{i}$$

5.3.2 Formule fondamentale d'Euler

Etudions l'équilibre radial et tangentiel d'un élément de courroie d'angle $d\phi$ sous l'action des efforts appliqués. (Voir Figure 5.10).

Rappelons que l'on fait l'hypothèse d'une fonctionnement en régime stationnaire et que la vitesse de rotation est constante. On va noter par m' la masse par unité de longueur de la courroie. Si ρ est la densité du matériau de la courroie et S sa section droite, on a $m' = \rho$.

L'élément de courroie est soumis à un ensemble de forces :

- θ et $\theta + d\theta$ les forces de traction de la courroie dirigés suivant les tangentes tracées de part et d'autre de l'élément;
- dN la réaction radiale de la poulie sur l'élément;
- dF la force de frottement entre la poulie et la courroie. Elle est opposée à la direction $d\theta$;
- F_{ge} la force centrifuge agissant sur l'élément de courroie et tendant à réduire dN, donc par la suite dF.

FIGURE 5.9 – Géométrie générale d'une courroie en charge

FIGURE 5.10 – Schéma des forces relatives à l'élément de courroie $r \, d\phi$

Les composantes normale et tangentielle exercées par la gorge de la poulie sur la courroie sont liées et limitées par le frottement entre les deux matériaux.

$$dF \le f \, dN \tag{5.15}$$

où f est le coefficient de friction entre la gorge de la jante et la courroie. Des valeurs typiques coefficients de friction pour différents matériaux de courroie

Matériau de la courroie	Coefficient de transmission μ
Cuir, côté poil	$0,3 + \frac{v}{100 [{\rm m/s}]}$
Cuir, côté chair	$0, 2 + \frac{v}{100 [m/s]}$
Coton	0,3
Soie artificielle imprégnée	0,35
Matériaux Synthétique	0,5

TABLE 5.1 – Tableau des valeurs des coefficients de transmission μ

sont fournies à titre indicatif au Tableau 5.1. Néanmoins dans l'approche du concepteur, on souhaite souvent se mettre en sécurité par rapport au glissement d'ensemble de la courroie sur la poulie et il est courrant de considérer un facteur de sécurité k vis-à-vis du coefficient de friction et de considérer un coefficient de frottement réduit μ :

$$\mu k \le f \tag{5.16}$$

k est évidemment supérieur à 1 et il est imposé par le cahier des charges. Le coefficient μ est appelé **coefficient de transmission**. Par hypothèse nous le supposerons constant le long de l'arc d'enroulement autour de la poulie.

Dans la suite on va considérer que l'on utilise pleinement la friction disponible au coefficient de sécurité près. Dans ce cas, on a la relation entre forces normales et forces tangentielles

$$dF = \mu \, dN \tag{5.17}$$

Si on étudie le phénomène à la limite du glissement d'ensemble, on prend évidemment k = 1 et $\mu = f$.

Projetons tout d'abord les forces sur la direction du rayon bissecteur. Il vient

$$dF_{ge} + dN = (2\theta + d\theta) \sin \frac{d\phi}{2}$$
(5.18)

Sachant que $d\phi$ est infinitésimal

$$\sin\frac{d\phi}{2} \simeq \frac{d\phi}{2}$$

et que l'on va négliger les termes du second ordre,

$$d\theta \ d\phi \simeq 0$$

on peut écrire :

$$dF_{ae} + dN = \theta \, d\phi \tag{5.19}$$

5.3. ETUDE DYNAMIQUE

Projetons à présent sur la tangente menée au point de percée du rayon bissecteur sur la circonférence. Il vient :

$$\theta \cos \frac{d\phi}{2} + dF = (2\theta + d\theta) \cos \frac{d\phi}{2}$$

Soit en négligeant les termes d'ordre supérieur

$$dF = d\theta \tag{5.20}$$

La force de frottement élémentaire est proportionnelle à l'action normale de la jante limité au coefficient de transmission μ disponible.

$$dF = \mu dN$$

où μ est le coefficient de friction disponible entre la gorge de la jante et la courroie pour un coefficient de sécurité k > 1 défini.

En insérant l'expression de $d\theta$ en fonction de dN dans la première éguation, il vient :

$$dF_{ge} + \frac{d\theta}{\mu} = \theta \, d\phi \tag{5.21}$$

Développons à présent l'expression des forces centrifuges

$$dF_{ge} = \rho \, dV \, \omega^2 \, R = \rho \, S \, R \, d\phi \frac{v^2}{R}$$

On en déduit l'expression de l'équation différentielle caractérisant l'évolution de force de tension θ en fonction de la position angulaire ϕ .

$$\frac{d\theta}{\theta - \rho \, S \, v^2} = \mu \, d\phi \tag{5.22}$$

En intégrant $\theta(\phi) = \tau$ de 0 à ϕ avec ϕ inférieur à la limite Ω , on trouve :

$$\ln \frac{\tau - \rho S v^2}{t - \rho S v^2} = \mu \phi$$

On en déduit la relation liant l'effort courant à l'effort t dans le brin mou :

$$\frac{\tau(\phi) - \rho S v^2}{t - \rho S v^2} = \exp(\mu \phi)$$
(5.23)

En définissant $m' = \rho S$, la masse par unité de longueur de courroie, il vient

$$\frac{\tau(\phi) - m' v^2}{t - m' v^2} = e^{\mu \phi}$$
(5.24)

On applique la formule à l'angle d'embrassement total \varOmega et on obtient la formule classique d'EULER 1 :

$$\frac{T - m' v^2}{t - m' v^2} = e^{\mu \Omega} = \frac{\bar{T}}{\bar{t}}$$
(5.25)

On note que dans cette formule les efforts T et t sont ceux qui, pour un angle d'embrassement Ω , permettent la stricte transmission de l'effort périphérique effectif Q.

L'effort $\tau(\phi)$ varie donc continûment de t à T, d'un point de tangence à l'autre, séparé de ΩR sur la jante de la poulie.

La Figure 5.11 représente l'allure de l'évolution de la tension dans la courroie en fonction de la position de la section considérée, repérée par son absisse curviligne s.

5.3.3 Tensions centrifuge, tension productive

L'équation différentielle (5.22) peut encore se mettre sous la forme :

$$\frac{d\theta}{d\phi} - \mu \theta = \mu m' v^2 \tag{5.26}$$

dont la solution s'écrit sous la forme d'une solution homogène plus une solution particulière $m'v^2$.

$$\tau(\phi) = A \exp(\mu\phi) + m' v^2$$
 (5.27)

Soit après avoir introduit la condition limite $\theta = t$ en $\phi = 0$,

$$\tau(\phi) = (t - m'v^2) \exp(\mu\phi) + m'v^2$$
(5.28)

En examinant la formule d'Euler (5.25), on distingue deux composantes.

$$T = T_c + \bar{T} \tag{5.29}$$

La première composante

$$T_c = m'v^2 \tag{5.30}$$

est liée aux forces centrifuges et à la vitesse de défilement v. Elle est appelée *tension centrifuge*. La formule indique que la tension centrifuge est

^{1.} dite aussi de Rankine ou d'Eytelwein

FIGURE 5.11 – Evolution de la tension dans la courroie en fonction de la position curviligne s d'après [3]

indépendante du rayon R de la poulie. On a donc la même valeur de N_c sur les deux poulies et par continuité des efforts, les brins subissent la même situation. En conclusion, on observe que il naît tout au long de celle-ci une tension $m'v^2$ du fait de la vitesse de la courroie. Cette tension n'est nullement liée à la transmission d'un couple entre les deux poulies.

La second composante $\overline{T}(\phi)$ reflète les tensions résultant de l'échange d'efforts entre la courroie et la poulie. Elle est appelée *tension productive*. On a vu que le couple transmis est proprotionnel à la différence des tensions dans les brins tenus et mous. Comme la tension centrifuge est contante, l'effort Q n'est dû qu'aux tensions productives :

$$Q = T - \bar{t} \tag{5.31}$$

On peut encore calculer la tension productive moyenne. Soit \bar{T}_0 , la moyenne

entre la tension productive du brin tendu et du brin mou.

$$\bar{T}_0 = \frac{T+\bar{t}}{2} \tag{5.32}$$

Il est intéressant de calculer le ratio entre l'effort périphérique lié à la différence des tensions productives à la valeur moyenne de ces tensions. Calculons le rapport $Q/(2\bar{T}_0)$. Il vient

$$\frac{Q}{2 \overline{T}_{0}} = \frac{\overline{T} - \overline{t}}{\overline{T} + \overline{t}}$$

$$= \frac{\overline{t} (\exp(\mu \Omega_{1}) - 1)}{\overline{t} (\exp(\mu \Omega_{1}) + 1)}$$

$$= \frac{\exp \frac{\mu \Omega_{1}}{2} - \exp \frac{-\mu \Omega_{1}}{2}}{\exp \frac{\mu \Omega_{1}}{2} + \exp \frac{-\mu \Omega_{1}}{2}}$$

$$= \tanh(\frac{\mu \Omega_{1}}{2})$$
(5.33)

On peut réécrire la formule sous la forme suivante :

$$Q = \bar{T}_0 \tanh(\frac{\mu \Omega_1}{2}) \tag{5.34}$$

Une conclusion très importante de cette formule est la suivante : pour qu'il y ait un effort équivalent non nul, et donc un couple transmis non nul, il est impératif d'avoir une tension initiale non nulle. Cette tension \overline{T}_0 sera introduite via la tension de pose.

5.3.4 Valeurs des tensions dans les brins pour un effort effectif donné \mathbf{Q}

L'équation d'EULER permet de calculer les efforts T et t pour un effort effectif Q donné et pour un coefficient d'interaction μ donné. La formule est obtenue par application des propriétés particulières des fractions :

$$\frac{\bar{T}}{\bar{T}-\bar{t}} = \frac{e^{\mu\,\Omega}}{e^{\mu\,\Omega}-1} = \frac{\bar{T}}{Q} \tag{5.35}$$

De sorte que :

$$\bar{T} = Q \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1} = T - m' v^2$$
(5.36)

5.3. ETUDE DYNAMIQUE

En définitive, les valeurs naturelles des tensions dans les brins développant un effort périphérique Q pour un angle d'embrassement apparent Ω sont solutions du système :

$$\begin{cases} \bar{T} - \bar{t} = Q \\ \frac{\bar{T}}{\bar{t}} = e^{\mu \Omega} \end{cases}$$

Soit en développant

$$\begin{cases} \bar{t} \left(e^{\mu \Omega} - 1 \right) = Q \\ \bar{T} = \bar{t} e^{\mu \Omega} \end{cases}$$

et finalement

$$\begin{cases} \bar{t} = Q \frac{1}{e^{\mu \Omega} - 1} \\ \bar{T} = Q \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1} \end{cases}$$
(5.37)

5.3.5 Calcul des tensions dans la courroie pour le système de poulies

On peut également calculer les tensions dans la courroie en appliquant la formule d'Euler à chacune des deux poulies.

Pour la petit poulie 1, la formule d'Euler s'écrit :

$$\frac{T - m' v^2}{t - m' v^2} = e^{\mu \Omega_1}$$
(5.38)

tandis que pour la grande poulie notée 2 :

$$\frac{T - m' v^2}{t - m' v^2} = e^{\mu \Omega_2} = e^{\mu (2 \pi - \Omega_1)}$$
(5.39)

Dans ces relations, les paramètres suivants sont donnés :

- La vitesse de défilement de la courroie v;
- Les coefficients de friction de la matière de la courroie sur les poulies $1 \text{ et } 2: f_1 \text{ et } f_2;$
- Le coefficient de sécurité au glissement k;
- Les angles d'embrassement Ω_1 et $\Omega_2 = 2\pi \Omega_2$.

Par contre les efforts T et t dans les brins ne sont pas connus, de même que les coefficients de transmission μ_1 et μ_2 . Ils doivent satisfaire les inégalités :

$$k \mu_1 \le f_1$$
 et $k \mu_2 \le f_2$ (5.40)

Ces équations sont insuffisantes pour déterminer les quatre inconnues T, t, μ_1 et μ_2

Remarquons encore que les formules (5.38) et (5.39) contiennent le même ratio de tensions dans les courroies pour les poulies 1 et 2 :

$$\frac{T - m' v^2}{t - m' v^2}$$

Il en ressort que l'on doit avoir l'égalité

$$\mu_1 \, \Omega_1 = \mu_2 \, \Omega_2$$

Comme l'angle embrassé sur la poulie 2 est supérieur, on constate que le plus grand coefficient de transmission naît sur la petit poulie 1. Dès lors à coefficient de frictions identiques $f_1 = f_2$, c'est sur la petite poulie 1 que le coefficient de transmission atteindra en premier la limite de friction du matériau et que c'est sur celle-ci que l'on observera le glissement d'ensemble en premier lieu.

5.3.6 Cas des courroies trapézoidales

Le cas des courroies trapézoïdales peut se déduire assez facilement des formules développées pour les courroies plates. La situation est illustrée à la Figure 5.12

FIGURE 5.12 – Coefficient de frottement dans le cas d'une courroie trapézoïdale

Lorsqu'elles sont en service les courroies trapézoïdales sont engagées dans des gorges de même géométrie usinées dans la poulie, dont les faces font entre elles un angle 2 β (Figure 5.12).

5.3. ETUDE DYNAMIQUE

Désignons par dN la réaction normale de la poulie sur l'élément $rd\phi$. dN est la résultante des réactions dN' normales aux deux parois de la gorge, qui conditionnent réellement la capacité de résistance au glissement tangentiel. Il apparait immédiatement la relation suivante :

$$dN = 2 \, dN' \, \sin\beta \tag{5.41}$$

Quant à l'effort de frottement dF, il peut être évalué comme la somme des contributions partielles des efforts dF' normaux aux surfaces de contact. En introduisant le coefficient de frottement f entre les matières de la courroie et de la gorge de la poulie, on peut estimer la force tangentielle équivalente développée par la poulie sur la courroie :

$$dF = dR_1 + dR_2 = 2 f \, dN' = \frac{2 f \, dN}{2 \sin \beta} = \frac{f}{\sin \beta} \, dN \tag{5.42}$$

Introduisons un coefficient de frottement apparent f':

$$dF = f' dN$$

On identifie immédiatement celui-ci à

$$f' = \frac{f}{\sin\beta} \tag{5.43}$$

Si on travaille maintenant avec un coefficient de sécurité k, on considère dans les calculs le coefficient de transmission apparent μ' :

$$\mu' = \frac{f}{\sin\beta k} \tag{5.44}$$

La formule d'EULER est donc applicable au cas des courroies à profil trapézoïdal, à condition d'introduire le coefficient de frottement apparent en lieu et place du coefficient de frottement réel matière à matière.

Compte tenu des valeurs normalisées de l'angle de gorge 2β au sommet du profil, on aboutit à des coefficients de frottement apparents f' compris entre 0, 8 et 2.

Cette analyse montre tout l'intérêt des courroies trapézoïdales par rapport aux courroies plates. A encombrement et caractéristiques de fonctionnement identiques et en négligeant les effets dynamiques en première approximation, le rapport T/t est multiplié par $\exp(1/\sin\beta)$ dans la formule d'Euler. Pour des valeurs courantes de β comprises entre 16° et 20°, ce terme conduit à des facteurs de l'ordre de 20, ce qui mène à un accroissement considérable des performances.

Il faut noter que les valeurs de β sont néanmois limitées vers le bas par le fait que l'on doit éviter le coincement de la courroie dans la gorge de la poulie. Ceci conduirait à des pertes trop importantes d'entraction et d'insertion de la courroie dans la gorge de la roue.

5.4 GLISSEMENT - RENDEMENT DE GLIS-SEMENT

5.4.1 Glissement élastique

L'effort moyen θ appliqué à un élément de courroie $r d\phi$ de section S varie exponentiellement de t à T. L'allongement de cet élément varaie en conséquence et dépend de la position angulaire ϕ de l'élément considéré le long de l'angle d'embrassement Ω . Cet allongement est maximum dans le brin tendu et par conséquent moindre dans le brin mou.

Il en résulte qu'en un temps donné une plus grande longueur de courroie défilera au niveau du brin tendu. On peut dès lors écrire la vitesse v_t au niveau brin mou soumis à une tension t:

$$v_t = \frac{\Delta \ell_0}{\Delta t} \left(1 + \varepsilon_t \right)$$

et la vitesse v_T dans le brin soumis à la tension T

$$v_T = \frac{\Delta \ell_0}{\Delta t} \left(1 + \varepsilon_T \right)$$

avec

- $-\Delta \ell_0$ la longueur de l'élément de courroie dans l'éat libre de tension,
- $-\Delta t$, le pas de temps considéré,
- $\varepsilon_F = F/(SE)$ l'allongement propositionnel de la courroie sous l'effet de l'effort de tension F,
- E le module de Young en traction.

Il en découle le rapport des vitesses :

$$\frac{v_t}{v_T} = \frac{1+\varepsilon_t}{1+\varepsilon_T} \simeq \frac{1}{(1-\varepsilon_t)(1+\varepsilon_T)} \simeq \frac{1}{(1+\varepsilon_T-\varepsilon_t-\varepsilon_T\varepsilon_t)}$$

et en négligeant le produit $\varepsilon_T \varepsilon_t$ devant l'unité. On trouve finalement

$$\frac{v_t}{v_T} = \frac{1}{1 + \Delta\varepsilon} = \frac{1}{1 + \frac{T-t}{SE}} = \frac{1}{1 + \frac{Q}{SE}}$$
(5.45)

Cette dernière expression est appelée **rendement de glissement**.

Cela étant, on sait que la formule d'Euler a été établie pour un contact à la limite du glissement d'ensemble, ce qui correspond, à une utilisation optimale de la courroie. On peut affirmer dans ces conditions que les poulies tournent avec une vitesse à la jante égale à la vitesse du premier élément de courroie pris à l'entrée.

Ainsi l'on peut écrire

$$\eta_g = \frac{v_t}{v_T} = \frac{v_{rec}}{v_{mot}} = \frac{1}{1 + \frac{Q}{SE}} \simeq 1 - \frac{Q}{SE}$$
(5.46)

pour des rapports Q/(SE) faibles (moins de 1 %).

Le rendement de glissement ne dépend pas de la vitesse de défilement de la courroie.

Un glissement élastique raisonnable est garanti lorsgu'on limite le rapport α de l'effort périphérique Q à la somme en module des efforts dans les brins calculés en régime de fonctionnement normal. Le rapport α est appelé *coefficient d'efficacité*. Un glissement d'ensemble intervient lorsqu'on le dépasse sensiblement.

On adopte en bonne pratique les valeurs suivantes :

.

$$\alpha = \frac{Q}{\bar{T} + \bar{t}} = \frac{\exp(\mu\Omega) - 1}{\exp(\mu\Omega) + 1} = \begin{cases} 0.45 & \text{pour les courroies plates} \\ 0.80 & \text{pour les courroies trapézoïdales} \end{cases}$$

Dans ces conditions, on peut déterminer la part prise par le glissement élastique dans le rendement global de la transmission.

Soit α fixé comme indiqué ci-dessus. Il vient en négligeant la contribution d'inertie (faible)

$$T + t = \frac{Q}{\alpha}$$
$$T - t = Q$$

d'où

$$T = \frac{1+\alpha}{2\alpha} Q$$

 et

$$Q = T \, \frac{2 \, \alpha}{1 + \alpha} = \gamma \, T$$

avec

$$\gamma = \begin{cases} 0.62 & \text{pour les courroies plates} \\ 0.89 & \text{pour les courroies trapézoïdales} \end{cases}$$

Reprenant l'expression du rendement de glissement :

$$\eta_g = 1 - \frac{Q}{S E}$$

Et remplaçant Q par son expression en fonction de T, sachant que

$$T = S R$$

où S est la section nette de la courroie et R est la tension admissible dans la coourroie qui sera calculée ultérieurement comme :

$$R = \frac{R_0}{K} - E_f \frac{e}{d_1}$$

Il vient

$$\eta_g = 1 - \frac{\gamma S R}{S E} = 1 - \frac{\gamma R}{E}$$

En chiffrant le résultat, on a les ordres de grandeurs suivants :

- Cuir S :

$$\eta_g = 1 - \frac{0.62 \cdot 150 \ N/cm^2}{25000 \ N/cm^2} \simeq 0.99$$

— Cuir HGC

$$\eta_g = 1 - \frac{0.62 \cdot 350 \, N/cm^2}{45000 \, N/cm^2} \simeq 0.99$$

Coton imprégéné

$$\eta_g = 1 - \frac{0.62 \cdot 245 \ N/cm^2}{90000 \ N/cm^2} \simeq 0.99$$

— Balata - coton - caoutchouc :

$$\eta_g = 1 - \frac{0.62 \cdot 260 \, N/cm^2}{77500 \, N/cm^2} \simeq 0.99$$

Ce qui conduit très majoritairement à un rendement supérieur à 99 % dans tous les cas de figure.

5.4.2 Glissement d'ensemble

Lorsqu'on fonctionne dans des conditions telles que le rapport α est sensiblement dépassé, la vitesse de défilement de la courroie est partout supérieure à celle que l'on peut mesurer à la jante de la poulie : *un glissement d'ensemble* apparaît.

On peut prouver que dans le cas du cuir par exemple, le coefficient de frottement obéit à une des deux lois linéaires décrites ci-dessous, suivant que la matière frotte du côté derme ou du côté épiderme : - Côté derme : $\mu = 0.22 + 0.012 w$

— Côté épiderme : $\mu = 0.33 + 0.02 w$

avec w la vitesse de glissement d'ensemble en cm/s.

Dans le cas du côté "derme", et pour une vitesse de glissement nulle, le coefficient de frottement serait de $\mu = 0.22$ tandis que pour une vitesse de glissement de 50 cm/s, ce coefficient passerait à $\mu = 0.8$.

Ainsi donc, si les conditions étaient telles que soudainement un coefficient de frottement de $\mu = 0.35$ s'avérait nécessaire, de par l'apparition d'une surchargre passagère, un calcul élémentaire conduirait à tolérer une vitesse de glissement de l'ordre de 10.83 cm/s. Pour une vitesse tangentielle à l'arbre moteur de 15 m/s, il apparaîtrait un rendement de glissement de l'ordre de

$$\eta_g' = \frac{1500 - 10.83}{1500} = 0.993$$

d'où le rendement global de glissement

$$\eta = \eta_q \eta'_q = 0.995 \, 0.993 = 0.988$$

qui dans le cas de l'exemple reste encore très acceptable.

Le glissement d'ensemble peut jouer un rôle favorable dans la transmission : le blocage de la poulie réceptrice est évité mais ce résultat n'est obtenu qu'au prix d'une usure intolérable du brin flexible. Comme la puissance dissipée en frottement $\simeq Q.v$ est intégralement transformée en chaleur, le phénomène de glissement, s'il perdure, peut conduire à l'échauffement puis à la destruction complète du lien flexible.

5.5 TENSION DE POSE

L'un des paramètres importants dans la transmission du mouvement est la tension initiale de pose de la courroie. Cette tension est celle qui règne dans toute la courroie en l'absence de couple sur les poulies motrice et réceptrice. Elle est généralement règlée au moment de la pose de la courroie par un système mécanique. Certains de ces dispositifs seront illustrés dans la suite de cet exposé (voir Section 5.5.5

Les tensions T et t dans les brins tendus et mous de la courroie en fonctionnement sont directement liés à la tension de pose T_0 . La relation nécessaire à la détermination des conditions de fonctionnement est déduite de l'étude de l'allongement de la courroie.

5.5.1 Calcul de la tension de pose

Soit T_0 la tension de pose. On définit encore la raideur de la courroie K_s . Si on reste dans le domaine élastique, la raideur est proportionnelle à la section droite S et au module de Young E_t du matériau :

$$K_s = S E_t$$

L'allongement relatif ϵ de la courroie est proportionnel à la tension $T(\phi)$ dans la section étudiée correspondant à l'angle ϕ sur la gorge et inversément proportionnelle au coefficient de raideur K_s .

$$\epsilon = K_s^{-1} T(\phi) = (S E_t)^{-1} T(\phi)$$

On fait l'hypothèse que l'on peut négliger les effets centrifuges devant la tension T_0 .

La variation de la longueur totale de la courroie s'obtient en intégrant au niveau de sa fibre primitive la longueur des morceaux de brin allongés sous l'effet de la tension :

$$\Delta L = \int_{L} (SE_t)^{-1} T(\phi) \, dL$$
 (5.47)

Comme la tension de pose est constante, on a

$$\Delta L = (SE_t)^{-1} L T_0 \tag{5.48}$$

On admet que la longueur totale de la courroie n'est pas modifiée au cours du fonctionnement. Les paliers, les poulies... sont indéformables, les brins restent tendus. Dès lors il suffit d'exprimer que l'allongement de la courroie sous l'effet des tensions en charge reste égal à celui calculé sous l'effet de la tension initiale de pose T_0 .

L'allongement est la somme des allongements des deux brins plus la somme des allongements des brins autour des poulies.

L'allongement des deux brins rectilignes soumis à la tension T et t vaut respectivement :

$$\Delta(A_1 A_2) = (SE_t)^{-1} T a \cos \alpha$$
$$\Delta(B_1 B_2) = (SE_t)^{-1} t a \cos \alpha$$

L'allongement autour des poulies 1 et 2 requiert une intégration le long de l'arc d'embrassement :

$$\Delta(A_1B_1) = \int_0^{\Omega_1} (SE_t)^{-1} T(\phi) R_1 d\phi = \int_0^{\Omega_1} (SE_t)^{-1} t e^{\mu\phi} R_1 d\phi$$
$$= \frac{(SE_t)^{-1}}{\mu_1} R_1 t \left(e^{\mu\Omega_1} - 1 \right) = \frac{(SE_t)^{-1}}{\mu_1} R_1 (T - t)$$

$$\Delta(A_2B_2) = \int_0^{\Omega_2} (SE_t)^{-1} T(\phi) R_2 d\phi = \int_0^{\Omega_2} (SE_t)^{-1} t e^{\mu \phi} R_2 d\phi$$
$$= \frac{(SE_t)^{-1}}{\mu_1} R_2 t \left(e^{\mu \Omega_2} - 1 \right) = \frac{(SE_t)^{-1}}{\mu_2} R_2 (T - t)$$

Soit l'allongement total de la courroie en fonctionnement :

$$\Delta L = a \left(SE_t \right)^{-1} \cos \alpha \left(T+t \right) + \left(T-t \right) \left(SE_t \right)^{-1} \left[\frac{R_1}{\mu_1} + \frac{R_2}{\mu_2} \right]$$
(5.49)

En remarquant que :

$$(T-t) R_1 = C_1$$

 $(T-t) R_2 = -C_2$

et en identifiant l'expression obtenue avec l'allongement sous la tension de pause seule, on trouve :

$$L T_0 = a \cos \alpha (T+t) + \left[\frac{C_1}{\mu_1} - \frac{C_2}{\mu_2} \right]$$
(5.50)

Cette équation (5.50) montre clairement le lien entre les tensions en fonctionnement dans les brins tendus T et mou t d'une part et la tension de pose d'autre part. Cette équation est toutefois assez délicate à utiliser en pratique. On peut déduire une expression approchée plus facile à manipuler en faisant l'hypothèse que la tension varie linéairement et pas exponentiellement le long de l'arc d'embrassement (voir Figure 5.13)

$$\tilde{T}_1 = T - \phi \frac{T-t}{\Omega_1}$$
 pour la poulie motrice 1
 $\tilde{T}_2 = T - \phi \frac{T-t}{\Omega_2}$ pour la poulie réceptrice 2

Cette hypothèse donne une expression approchée plus simple de l'allongement ΔL , d'autant plus proche de la valeur réelle que l'entraxe *a* est grand devant les rayons primitifs R_1 et R_2 des poulies. Dans ce cas, les variations de la partie enroulée de la courroie devient faible par rapport à celle des parties rectilignes. Compte tenu de l'approximation linéaire de la variation de la tension productive, les allongements des deux parties enroulées A_1B_1 et A_2B_2

FIGURE 5.13 – Approximation de l'évolution de la tension dans la courroie en fonction de la position curviligne s d'après [3]

sont évalués en utilisant la règles des trapèzes au lieu de l'intégration exacte autour de l'angle d'embrassement. Il vient :

$$\begin{aligned} \Delta(A_1B_1) &= \int_0^{\Omega_1} (SE_t)^{-1} \tilde{T}(\phi) R_1 d\phi = \int_0^{\Omega_1} (SE_t)^{-1} \left(T - \phi \frac{T - t}{\Omega_1} \right) R_1 d\phi \\ &= (SE_t)^{-1} R_1 \Omega_1 \frac{T + t}{2} \\ \Delta(A_2B_2) &= \int_0^{\Omega_2} (SE_t)^{-1} \tilde{T}(\phi) R_2 d\phi = \int_0^{\Omega_2} (SE_t)^{-1} \left(T - \phi \frac{T - t}{\Omega_2} \right) R_2 d\phi \\ &= (SE_t)^{-1} R_2 \Omega_2 \frac{T + t}{2} \end{aligned}$$

L'expression approchée de l'allongement de la courroie s'écrit alors :

$$\Delta L = (SE_t)^{-1} L \frac{T+t}{2}$$
 (5.51)

En comparant avec la valeur de l'allongement sous la tension de pose, on a

$$T + t = 2T_0$$
(5.52)

On peut encore écrire

$$T_0 = \frac{T+t}{2} = \frac{(\bar{T}+m'v^2) + (\bar{t}+m'v^2)}{2} = \bar{T}_0 + m'v^2 \qquad (5.53)$$

Cela signifie que pour une tension de pose T_0 donnée, la tension productive moyenne diminue d'autant plus que la vitesse est grande et, en conséquence, que l'effort transmissible Q diminue.

$$Q = (T_0 - m'v^2) \tanh \frac{\mu \Omega_1}{2}$$
 (5.54)

expression qui avait déjà été obtenue précédemment.

5.5.2 Procédure de choix d'une tension de pose

En résumé, pour déterminer le point de fonctionnement du système courroie-poulies, on cherche à déterminer toutes les inconnues du systèmes de transmission par courroie et poulies. Le couple de la poulie moteur C_1 étant supposé connu, il faut déterminer les 6 variables suivantes T, tension dans le brins tendu, t, tension dans le brin mou, T_0 tension de pose, μ_1 le facteur d'interaction de la poulie 1, μ_2 le facteur d'interaction de la poulie 2, et le couple de sortie C_2 à la poulie 2. Par cela on doit résoudre le système d'équation suivant :

$$C_1 + (T-t) R_1 = 0 (5.55)$$

$$C_2 - (T-t) R_2 = 0 (5.56)$$

$$\frac{T - m'v^2}{t - m'v^2} = \exp(\mu_1 \,\Omega_1) \tag{5.57}$$

$$\frac{T - m'v^2}{t - m'v^2} = \exp(\mu_2 \,\Omega_2) \tag{5.58}$$

$$k \mu_1 \leq f_1 \qquad k \mu_2 \leq f_2$$
 (5.59)

$$T + t = 2T_0 (5.60)$$

La démarche de conception est la suivante. Comme c'est la petite poulie qui est sujette au glissement d'ensemble en premier lieu, on suppose d'abord que la première inégalité (5.59) doit être satisfaire en tant qu'égalité. On peut alors utiliser les cinq autres équations pour déterminer les autres inconnues T, t, T_0, C_2 et μ_2 . On vérifiera in fine que la seconde inégalité (5.59) est bien respectée. Dans le cas contraire, on reprend la procédure en transformant d'abord en égalité cette dernière inéquation.

Une telle démarche permet de définir une tension de pose T_0 assurant un fonctionnement sans glissement avec un coefficient de sécurité k imposé. La suite de toute l'étude suppose que la limite de sécurité caractérisée par k est atteinte sur la plus petite des poulies, la poulie motrice. Les équations (5.55), (5.56) et (5.60) donnent les expressions des tensions dans les brins tendus et mous en fonction du couple C_1 , de la tension de pose T_0 , du rayon de la poulie motrice R_1 :

$$T = T_0 + \frac{C_1}{2R_1} \tag{5.61}$$

$$t = T_0 - \frac{C_1}{2R_1} \tag{5.62}$$

En combinant ces équations avec l'équation d'Euler appliquée à la poulie 1 (5.38), on trouve une équation liant C_1 et T_0 .

$$C_1 = 2 (T_0 - m'v^2) R_1 \frac{\exp(\mu_1 \Omega_1) - 1}{\exp(\mu_1 \Omega_1) + 1}$$
(5.63)

On met en évidence le fait que pour Ω_1 , v, et μ_1 donnés, le couple C_1 varie linéairement en fonction de la tension de pose T_0 .

En notant

$$C(\Omega_1) = \frac{\exp(\mu_1 \Omega_1) - 1}{\exp(\mu_1 \Omega_1) + 1}$$

On peut écrire :

$$C_1 = 2 (T_0 - m'v^2) R_1 C(\Omega_1)$$
(5.64)

Certains fabriquants définissent encore un coefficient appelé facteur d'arc de transmission :

$$A(\Omega) = \frac{C(\Omega)}{C(\pi)} \tag{5.65}$$

ce coefficient est utilisé par le fabricant pour corriger la puissance transmissible à partir d'une valeur de référence correspondant à un angle d'enroulement de 180° . L'allure de la courbe représentative de coefficient est esquissé à la Figure 5.14 pour des angles d'enroulement entre 80° et 180° . On écrit alors

$$C_1 = 2 (T_0 - m'v^2) R_1 C(\pi) A(\Omega_1)$$
(5.66)

5.5.3 Valeur minimale de la tension de pose

Condition de non glissement

Le respect du coefficient de sécurité de glissement k s'écrit :

$$k \mu_1 = f_1$$
 et $k \mu_2 \leq f_2$

FIGURE 5.14 – Coefficient $C(\alpha)$ pour des angles d'enroulement entre 80° et 180° d'après [3]

où f_1 et f_2 sont les coefficients de frottement entre les poulies et la courroie.

Si on fait l'hypothèse que c'est la roue 1 qui fonctionne à la limite de la sécurité, la formule (5.66) donne le couple conduisant au glissement d'ensemble.

$$T_0 = \frac{C_1}{2R_1} \frac{\exp(kf_1\Omega_1) + 1}{\exp(kf_1\Omega_1) - 1} + m'v^2$$
(5.67)

Il convient ensuite de vérifier que la roue 2 est en dessous du glissement :

$$T_0 \ge \frac{C_1}{2R_1} \frac{\exp(kf_2\Omega_2) + 1}{\exp(kf_2\Omega_2) - 1} + m'v^2$$
(5.68)

Si cette condition n'était pas vérifiée, cela indiquerait que la limite vis-à-vis du glissement est atteinte sur la poulie 2. Il conviendrait alors de prendre pour valeur la tension de pose T_0 obtenue pour la poulie 1. Si les conditions de frottement était identiques sur les deux roues, celle qui a le plus petit arc d'enroulement donne la valeur de T_0 .

Dans la pratique le facteur de sécurité k est généralement choisi proche de 2. Toutefois la prise en compte des surcharges éventuelles lors de démarrages, ou d'arrêts fréquents, de couples fortement variables, de mauvaises conditions de fonctionnement, etc. on impose un coefficient de sécurité souvent majoré.

Pour des raisons de simplicité de calcul, les constructeurs proposent dans leurs méthodes de détermination pratique d'appliquer cette majoration à la puissance transmissible par la courroie et non comme facteur de sécurité de glissement.

Allongement	Couple moteur		
Courroie	Régulier	Variable	Très variable
Etroite	0,6	0,8	1,0
Classique	$0,\!5$	0,6	$0,\!8$

TABLE 5.2 – Allongement efficace moyen pour vérification de la tension depose

5.5.4 Contrôle de la tension de pose

Le contrôle de la tension peut être réalisé par l'un des deux moyens suivants :

- 1. Par la mesure de l'allongement relatif de la courroie : 0,6% à 1% suivant le type de courroie et la régularité de la charge
- 2. Par la mesure de la flèche du brin rectiligne sous un effort donné F, normal à ce brin et appliqué en son milieu. La flèche f est liée à l'effort F et à la tension de pose T_0 par la relation

$$f = \frac{F a \cos \alpha}{4 T_0} \tag{5.69}$$

L'expression de la flèche de contrôle s'obtient par l'étude de l'équilibre de l'éléments de courroie au voisinage du point d'application de la charge de test F. Cet équilibre s'exprime par la relation

$$F = 2 T_0 \sin \Phi$$

L'angle Φ étant petit et la longueur du brin étant donné par $a \cos \beta$, on a

$$\sin\Phi \simeq \tan\Phi \simeq \frac{2f}{a\cos\alpha}$$

Soit

$$F = \frac{4 T_0 f}{a \cos \alpha}$$

Généralement l'effort F est choisi de façon à provoquer une flèche f égale à 1% de la porté $a \cos \alpha$.

FIGURE 5.15 – Contrôle de la tension de pose d'après [3]

5.5.5 Technologies d'imposition d'une tension de pose

La précontrainte est appliquée par variation forcée d'entraxe

Dans le cas de cette méthode simple à mettre en oeuvre, le moteur électrique entraînant la poulie motrice (d_1) est fixée sur un socle réglable en position qui permet un accroissement forcé d'entraxe de plusieurs centimètres (action de tirants filetés ou de vis de poussée).

Deux dispositifs de réglage sont illustrés aux Figures 5.19 a et b. Suivant la conception, le berceau glisse sur un plan ou oscille autour d'un axe, jusqu'à atteindre la position définitive voulue. Dans le cas d'une variation d'entraxe, on peut calculer la précontrainte T_0 qui en résulte.

L'effort dans le brin mou est maintenu constant quel que soit l'allongement de la courroie en régime

La Figure 5.16 montre le système utilisé dans son principe. La Figure 5.17 présente la solution du galet tendeur classique, constitué d'une poulie folle à jante lisse appuyée à la surface extérieure du brin mou (i.e. brin mené). Ce galet tendeur est généralement placé du côté de la petite poulie, afin d'accroître Ω , l'angle d'embrassement apparent minimun, caractéristique de la transmission.

L'utilisation d'un enrouleur présente un inconvénient majeur : il provoque une flexion supplémentaire de la courroie, inversée par rapport à celle qui résulte de l'enroulement sur les poulies principales. L'usure et la fatigue du matériau

FIGURE 5.16 – Principe de maintien de la tension constante dans le brin mené

FIGURE 5.17 - Système à galet tendeur

s'accroissent nécessairement. D'une manière générale, on évite l'utilisation de galet dont le diamètre est inférieur à d_1 , diamètre caractéristique de la petite poulie. En bonne pratique, la distance qui sépare l'axe du galet de la poulie la plus proche doit être de l'ordre de :

$$a_g \geq d_1 + d_g$$

Dans les transmissions avec des courroies trapézoïdales modernes, il n'est pas généralement nécessaire d'augmenter l'arc embrassé. Dans ce cas, les galets ne sont utilisés que pour ajuster la tension initiale des courroies (Voir Figure 5.17-c).

Réglage de la tension par application d'un effort constant à l'axe

de la poulie motrice, quel que soit l'allongement de la courroie en régime

FIGURE 5.18 – Principe du réglage de la tension par action sur la poulie motrice

FIGURE 5.19 – Réalisation pratique du règlage par action sur la poulie motrice

Le principe du système est présenté à la Figure 5.18. Dans les dispositifs de contrainte les plus simples, le moteur électrique portant la poulie menante se déplace sur un chariot (Figure 5.19 a) ou oscille autour d'un axe (Figure 5.19 b). Le réglage est cette fois obtenu par application d'un poids G appliqué en permanence. La liberté de mouvement du support moteur est à présent requise : elle est obtenue par la suppression du système de réglage forcé de l'entraxe.

Au besoin, le chariot reçoit à son extrémité libre une charge supplémentaire (poids ou ressort).

Les limites de réglage d'entraxe sont les suivantes :

- Entraxe nominal : -1% de L sous tension
- Entraxe nominal : +3% de L sous tension
- L = longueur de courroie intérieure ou primitive.

Dispositifs particuliers permettant un asservissement des tensions

Les dispositifs examinés précédemment (chariots, plateaux oscillants, galets tendeurs) ne permettent que le maintien à un niveau constant de la tension t dans le brin mou ou de la somme (t + T) des efforts d'entrée et de sortie.

La tendance actuelle est d'assurer un réglage automatique des tensions dans les brins en fonction de la charge périphérique réellement développée. Le principe de fonctionnement des dispositifs prévus à cet effet est schématisé à la Figrure 5.20 a. Il consiste à utiliser le moment réactif du stator d'un moteur électrique ou d'une transmission par engrenage.

FIGURE 5.20 – Asservissement de t et T à la charge Q

Dans la conception schématisée à la Figure 5.20-b, le couvercle avant, côté poulie, du moteur électrique est éguipé d'une portée cylindrigue excentrée montée sur un roulement, lui-même serti dans un montant fixé au sol. On rend ainsi possible l'action du moment réactif. Une conception un peut différente est présentée à la Figure 5.20-c où il est fait usage d'une réduction par engrenage.

L'arbre (1) du moteur électrique est équipé d'une roue dentée menante (4) et supporte une pièce (2) par l'intermédiaire d'un coussinet lisse (ou d'un roulement). Ce support oscillant (2) porte un axe calé dur sur lequel glisse la roue (3) solidaire de la poulie motrice.

5.6 ENTRAXE ET LONGUEUR DE COUR-ROIE

5.6.1 Entraxe

L'entraxe a d'une transmission est limité de deux manières différentes :

- Par l'encombrement optimum du système.
- Par la résistance à la fatigue du matériau utilisé pour la courroie, compte tenu des changements de courbure du brin tendu.

L'encombrement du système est une fonction des diamètres des poulies.

— Pour les courroies plates, on a

$$(d_1 + d_2) \le a \le 5 (d_1 + d_2) \tag{5.70}$$

— Pour les courroies trapézoidales :

$$0,75 (d'_1 + d'_2) \le a \le 2 (d'_1 + d'_2)$$
(5.71)

où d'_1 et d'_2 sont les diamètres primitifs des poulies à gorges (diamètres mesurés au niveau de l'axe neutre de la section trapézoidale)

FIGURE 5.21 – Influence de la fréquence du changement de courbure du brin tendu sur l'endurance du matériau de la courroie. Ici 5 poulies et donc Z=5

Le second facteur limitif sur la longueur du brin est la résistance à la fatigue du matériau utilisé pour la courroie, compte tenu des changements de courbure du brin tendu (voir Figure 5.21).

Pour modérer la fatigue du matériau, on fixe une fréquence d'incurvation limite :

$$Fr = \frac{Z v}{\mathcal{L}} \le F_l (Hz)$$
 (5.72)

où

- F_l la fréquence limite admissible caractéristique du matériau,
- Z le nombre d'incurvations successives égale au nombre de poulies et de galets sur la longueur du brin tendu,
- -v la vitesse de défilement du brin tendu en m/s,
- $-\mathcal{L}$ la longueur réelle du brin tendu compte tenu des poulies ou galets qu'il embrasse de la poulie motrice à la dernière poulie réceptrice,

La géométrie la plus habituelle ne comporte que deux poulies. Le brin tendu est alors rectiligne et tangent aux jantes des poulies numérotées 1 et 2 (Voir Figure 5.7). Dans ces conditions, on peut écrire en première approximation

$$0,9\,a'\,\simeq\,\mathcal{L}\tag{5.73}$$

où a' est proche de la valeur réelle de l'entraxe et \mathcal{L} est la longueur du brin tendu bitangent.

En introduisant $\mathcal{L} = 0, 9 a'$ dans la relation aux fréquences, il vient :

$$a' \ge \frac{2v}{F_l \, 0,9} \tag{5.74}$$

En définitive, on adopte une valeur de a supérieure ou égale à a' tout en restant entre les limites fixées par la bonne pratique. a doit satisfaire simultanément aux inégalités suivantes :

 $a \ge a'$ calculé pour la fréquence limite F_l (5.75)

 $a_{min} \ge a \ge a_{max}$ compte tenu des encombrements limites (5.76)

Pour d'autres dispositions plus complexes, la Figure 5.22 peut éventuellement simplifier la détermination des longueurs.

Une variation d'entraxe doit être prévue, soit pour rattraper l'usure ou les allongements permanents, soit pour permettre l'introduction des courroies trapézoidales dans leurs gorges respectives. On compte en général sur une variation d'entraxe de :

- 0 à 5 % de L_N pour les courroies en cuir,
- 0 à 3 % de L_N pour les courroies en matériau symthétique,
- -1,5 à 3 % de L_N pour les courroies trapézoidales.

FIGURE 5.22 – Calcul des longueurs de courroie plate dans le cas de géométries complexes

5.6.2 Longueur L du lien flexible

FIGURE 5.23 – Détermination de L ou de EA = a

Calculons la relation qui lie l'entraxe à la longueur L de courroie, dans le cas le plus courant d'une transmission moderne sans enrouleur (ce qui arrive avec tout autre matériau que le cuir).

Dans le cas où d_1 , d_2 et *a* sont connus, on détermine tout d'abord Ω_1 , le plus petit des angles d'embrassement :

$$\Omega_1 = 2\cos^{-1}\frac{d_2 - d_1}{2a} \tag{5.77}$$

puis Ω_2

$$\Omega_2 = 2\pi - \Omega_1 \tag{5.78}$$

Des conditions géométriques simples conduisent ensuite à la détermination de la longueur L de la courroie

$$L = \Omega_1 \frac{d_1}{2} + (2\pi - \Omega_1) \frac{d_2}{2} + 2\sqrt{a^2 - (\frac{d_2 - d_1}{2})^2}$$
(5.79)

En réalité, le problème se pose d'une manière un peu différente. On connaît un a approximatif. On doit en déduire la longueur L correspondante. Cette longueur L doit être nomalisée à la valeur standard la plus proche dans la série des nombres normaux. On doit ensuite calculer l'entraxe nouveau qui correspond à la valeur normalisée de la longueur L.

D'où la nécessité d'établir des formules approchées permettant le passage de la valeur de l'entraxe a à la longueur de la courroie L et vice versa.

A noter que la valeur adoptée est systématiquement la valeur normalisée supérieure : une valeur L_N supérieure entraîne en effet une valeur de la fréquence Fr p1us faible que celle imposée dans le calcul initial.

Basons les développements sur le schéma de la Figure 5.23, on peut écrire :

$$L = \frac{\pi}{2} (d_1 + d_2) + 2 a \cos \alpha + \alpha (d_2 - d_1)$$
 (5.80)

avec α généralement assez faible. Passons au sinus et développons en série de Mac Laurin, il vient :

$$L = \frac{\pi}{2} (d_1 + d_2) + \alpha (d_2 - d_1) + 2 a - a (\frac{d_2 - d_1}{2 a})^2$$

Assimilons l'angle au sinus, il vient

$$\alpha \simeq \frac{d_2 - d_1}{2 a} \tag{5.81}$$

et partant

$$L = \frac{\pi}{2} (d_1 + d_2) + \frac{(d_2 - d_1)^2}{2 a} + 2 a - \frac{(d_2 - d_1)^2}{4 a}$$

Soit

$$L = \frac{\pi}{2} (d_1 + d_2) + 2a + \frac{(d_2 - d_1)^2}{4a}$$
 (5.82)

La longueur L est ainsi connue approximativement. On la normalise supérieurement L_N .

La longueur ainsi calculée correspond, pour une courroie plate, à la longueur intérieure, alors que dans le cas d'une courroie trapézoïdale, elle correspond à la longueur primitive, c'est-à-dire celle correspondant aux rayons théoriques de non glissement en fonctionnement sans charge.

En règle générale, cette longueur théorique de courroie calculée par la relation (5.82) est différente de la longueur réelle puisque la courroie est prise parmi les valeurs standards proposées dans les catalogues. Celles-ci sont généralement choisies en fonction des séries de Renard.

Cette relation (5.82) permet aussi de calculer la valeur théorique de l'entraxe a corespondant à une courroie et deux poulies données. Dans la majorité des cas, la valeur de cet entraxe doit être règlable de façon à ajuster la tension de pose de la courroie.

Dans le cas du dimensionnement, on est souvent amener à procéder en sens inverse et à déterminer l'entraxe réel a_R à partie d'une longueur de courroie normalisée L_N . Notons que la longueur L_N est la longueur de la face interne pour les courroies plates tandis que pour les coourroies trapézoïdales, L_N est la longueur mesurée au niveau de l'axe neutre de la section droite.

Introduisons la valeur normalisée L_N de la longueur L et calculons l'entraxe correspondant. Il vient :

$$L_N = \frac{\pi}{2} (d_1 + d_2) + 2 a_R + \frac{(d_2 - d_1)^2}{4 a_R}$$

qui se transforme aisément en :

$$8 a_R^2 + 2 a_R \left[\pi \left(d_1 + d_2 \right) - 2 L_N \right] + \left(d_2 - d_1 \right)^2 = 0$$

On calcule les racine de l'équation du second degré :

$$a_R = \frac{-[\pi(d_1 + d_2) - 2L_N] \pm \sqrt{[\pi(d_1 + d_2) - 2L_N]^2 - 8(d_2 - d_1)^2}}{8} \quad (5.83)$$

La géométrie du système est ainsi déterminée.

5.7 DIMENSIONNEMENT - CHOIX DES COURROIES

5.7.1 Courroies plates

Normalisation

La normalisation des courroies est régie par les normes NBN 470-1957 et 583-1961 - ISO/R22 et R63.

Les diamètres des poulies sont étagés de 40 à 2000 mm en suivant la série des nonbres normaux (série de Renard) R_{20} .

Les *largeurs* des courroies et des jantes des poulies sont étagées de 20 à 630 mm en suivant la série des nombres normaux :

- R_{10} pour les largeurs de 20 à 63 mm
- R_{20} pour les largeurs de 63 à 630 mm

On notera que la largeur de jante est en général la valeur R_{20} juste supérieure à celle retenue pour la courroie. Les longueurs de courroies plates sans fin sont mesurées sous tension initiale, au niveau de la face de contact. Les longueurs normalisées sont étagées à partir de 500 mm et correspondent aux termes successifs de la série R_{20} . Des valeurs de L non normalisées sont utilisées dans certains cas. Dans ce cas de figure, l'utilisation d'un dispositif de "jonctionnement" est rendue indispensable (voir Figure 5.24). Il faut noter que les courroies jonctionnées sont très nettement déforcées par rapport aux courroies sans fin de même section.

Bases théoriques du dimensionnement

Transcrivons tout d'abord le système d'équations construit à partir de la formule d'Euler :

$$\begin{cases} \bar{t} = t - m'v^2 = \bar{Q} \frac{1}{e^{\mu \Omega} - 1} \\ \bar{T} = T - m'v^2 = \bar{Q} \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1} \end{cases}$$
(5.84)

Dans la dernière équation, rappelons que T est l'effort total appliqué à la courroie, m' est la masse par unité de longueur de la courroie, v est sa vitesse périphérique, \overline{T} est l'effort maximum récupérable à la jante, \overline{Q} est l'effort périphérique maximum prévisible ($\overline{Q} = Q$ x facteur de service), μ le coefficient de frottement moyen service, Ω l'angle d'embrassement apparent mesuré sur la petite poulie.

Calculons la section nette S de courroie qui permet la transmission de l'effort périphérique \bar{Q} , le lien flexible étant à la limite du glissement.

Si R est 1a tension admissible disponible en traction, caractéristique du matériau et de la géométrie de la transmission, on peut écrire :

$$T = S R \tag{5.85}$$

La masse m' calculée par unité de longueur peut également s'exprimer en fonction de la section nette S.

$$m' = S \rho \tag{5.86}$$

où ρ est la densité spécifique de la courroie en kg/m^3 .

En introduisant les expressions de T et de m' dans la relation en \overline{T} , on obtient :

$$S(R - \rho v^2) = \bar{Q} \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1}$$
(5.87)

d'où l'expression de la section nette :

$$S = \frac{\bar{Q}}{R - \rho v^2} \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1}$$
(5.88)

Il est à noter que la section nette nécessaire S est d'autant plus faible que le produit $\mu\Omega$ est élevé. Un coefficient de frottement plus élevé, un plus grand entraxe ou un plus petit rapport de réduction i conduisent à une meilleure utilisation du matériau constitutif de la courroie.

Une première remarque s'impose à propos de la tension adnissible R: la courroie est à la fois soumise à un effort de traction T et aux contraintes qui résultent de son incurvation sur la longueur des arcs de contact au niveau des jantes. Les tensions de flexion qui en résultent sont évidemment les plus élevés au niveau de la poulie de petit diamètre (d_1) .

Appelons *e* l'épaisseur de la courroie, E_f son module d'élasticité à la flexion. Confondons l'axe neutre avec la fibre moyenne de la courroie enroulée sur le rayon $d_1/2$ de la poulie. La courbure étant constante, il y correspond un moment de flexion pure et, par voie de conséquence, des tensions σ_f qui s'ajoutent aux tensions de traction (induites par l'effort *T*).

Appliquons la loi de Hooke à la fibre la plus sollicitée. L'allongement proportionnel calculé à la fibre externe de la courroie est déterminé par l'expression suivante (cfr cours de Résistance de Matériaux)

$$\epsilon = \frac{e/2}{d_1/2 + e/2}$$
(5.89)

	Résistance de la jonction par rap- port à celle d'une courroie intacte		
G 11.	Colle à cuir		80 à 85%
Collage	Colle à caoutchouc		80 à 85%
Couture	Lanières tannées en suif		30%
Couture	Cordes en boyaux		50%
	Boulons et couvre-joints (aboutement)	BBB	30%
Agrafage	Boulons et couvre-joints (peigne)		25%
	Agrafes en acier ou spirales à tige		50 à 80%

FIGURE 5.24 – Jonction des courroies

et négligeant e/2 vis-à-vis du rayon $d_1/2$, il vient

$$\epsilon = \frac{e}{d_1} \tag{5.90}$$

et partant en utilisant la loi de Hooke

$$\sigma_f = E_f \frac{e}{d_1} \tag{5.91}$$

d'où la relation permettant le calcul de la tension réelle admissible en traction ${\cal R}$:

$$R = R^{\star} - \sigma_f = \frac{R_0}{K} - E_f \frac{e}{d_1}$$
 (5.92)

où K est un coefficient de sécurité. Quelques valeurs typiques des caractéristiques R_0 , K, E_f , E_t , e/d_1 sont fournies à la Figure 5.25 en même temps que les valeurs de ρ , v_{max} , μ , et θ_{max} (température maximale d'utilisation), en fonction du type de matériau de la courroie.

Une seconde remarque concerne la valeur de l'effort périphérique Q à introduire dans la formule de la section nette. La force tangentielle dépend du couple transmis, grandeur qui peut être fortement variable au cours du cycle. On en tient compte en pratique en introduisant un facteur service f_s , supérieur à l'unité, qui dépend à la fois du type de machine motrice et réceptrice ainsi que des conditions de fonctionnement spécifiques à l'installation (poussière, eau, huile, température élevée, etc.).

En première approximation, et en l'absence de directives précises émanant d'un fabricant, on peut adopter les valeurs proposées dans l'abaque de Richter-Ohlendorf reprise à la Figure 5.26. On y a tracé à titre exemplatif : turbines hydrauliques, démarrage moyens, pleine charge avec chocs raisonnables, courroies, 8 heures par jour donne $f_s = 1.73$.

Calcul pratique d'une courroie plate

Les fabricants de courroie fournissent généralement des nomogranmes et des coefficients de correction pour le calcul rapide d'une transmission par courroie. Ces abaques tiennent compte de 1a vitesse circonférentielle, du type de courroie, du diamètre de la plus petite poulie et de l'angle d'enroulement de la courroie sur cette dernière.

L'abaque principal fournit la puissance P_1 transmissible par cm de largeur pour une courroie de type (i.e. d'épaisseur) donné, en fonction de la vitesse périphérique.

Pour chaque type de courroie, le fabricant indique également le diamètre d_1 minimum préconisé pour une bonne utilisation du lien flexible.

Dans ces conditions, on déterminera la largeur nécessaire en respectant l'organigramme suivant.

Supposons tout d'abord que P_{rec} et N_{rec} , respectivement la puissance et la vitesse de rotation imposées à la poulie réceptrice soient les données fondamentales du problème.

0 5	I					t O
Temp. max. de fonct. Ø [°C max	35 35 45	40 45 70		4070	7080	courroi
Coefficient de frottement f	derme 0,22 + 0,012 w épiderme	0,5	0,3 0,35 -	comme pour • cuir 0,75	0,35 + 0,012 w	a/sec. Pour les
Vitesse périph. max. v en max en	30 50 10 10 10 10 10 10 10 10 10 10 10 10 10	40 40	50 50 65	80 éventuel jusqu'à 100	2530 60	née en ci
Fréqu. limite d'endu- rance en [s ⁻¹]	5 25 25	3 30 30 3 30 30	40 40 80	80	40 5080	le exprir ère
Densité (p= $10^3 \mathcal{D}$ en[kg/m ³])	1,0 0,95 0,9	1,25 1,2 1,2	1,3 1,0 1,1.1,15	1,11,2	1,25	it d'ensemb. ère à matiè
Rap. maxi. dı	0,033 0,04 0,05	0,04 0,035 0,033	0,05 0,04	0,01	I	lssemen it mati
Module de Young en flexion E _f en[N/cm ²]	50009000 40008000 30007000	5000 5000	4000 4000 -	55000	5000	tesse de gl: de frottemer
Tension admissible totale R [*] en[N/cm ²]	360410 430500 430650	430540 330540 330540	230500 330500 16502200	16502200	700900	w est la vi coefficient nouc
Coef. de sécurité K	· · · · · · · · · · · · · · · · · · ·	1215 1115 1215	1015 1015 1012	1012		ttement, leur du : caoutc
Module de Young en traction E en [N/cm ²]	25000 35000 45000	4000 90000150000 35000120000 50000130000	50000140000 - -	55000	50000140000	ifficient de fro u fournit la va u : balata ; Ca
Tension de rupture à la traction R ₀ en [N/cm ²]	2500 3000 30004000	50006500 50006500 50006000	35005000 5000 1800022000	1800022000	1 1	bression du coé lles, le tablea o : coton ; Ba
Type de courroie Matériau utilisé	Cuir type S HGL	Tissus -imprégnés Co-Ba Ca-Ba-Co Ca-Co	-non impr. C u soie art. nylon- perlon	C. Cuposité contast Guir/Ca résistance mat.Plast.	C. trap. - normales - de type étroit	[†])ans l'exr trapézoída Légende : C

FIGURE 5.25 – Caractéristiques générales des courroies

* Structure en couches superposées de matériaux collés

1. On choisit les diamètres d_1 et d_2 nomalisés R_{20} en fonction du rapport de réduction i nécessaire et de l'encombrement limite toléré.

282

FIGURE 5.26 – Facteur de service approximatif d'après Richter-Ohlendorf

- 2. Compte tenu d'un entraxe approximatif choisi en fonction du type de courroie, on détermine la longueur normalisée la plus proche et l'entraxe réel correspondant. La géométrie est ainsi parfaitement définie : d_1 , d_2 , L_N et EA_{reel} sont à présent connus.
- 3. L'épaisseur de la courroie caractérise le type. Cette épaisseur sera choisie en fonction du matériau utilisé et du diamètre d_1 . Dans la mesure du possible, il est conseillé d'utiliser la formule de bonne pratique suivante :

$$e = d_1/100 + 3 \,\mathrm{mm} \tag{5.93}$$

avec d_1 en mm. L'épaisseur approximative permet la détermination du type qui répond le mieux à l'application.

4. Le type étant déterminé, l'abaque $(P_1, v, type)$ est utilisable pour la vitesse v de défilement de la courroie correspondant de l'application. On détermine la puissance P_1 (en kW/cm) caractéristique du type, dans le cadre des conditions particulières qui ont été fixées lors de la construction de l'abaque. Une largeur idéale s'en déduit :

$$l_{id} = \frac{f_s P_{mot}}{P_1} = \frac{f_s P_{rec}}{P_1 \eta}$$
(5.94)

avec η le rendement global qui vaut approximativement $\eta = 0.97$.

5. Cette largeur idéale doit être majorée pour tenir compte des conditions réelles de l'utilisation. La largeur l_{id} est dès lors divisée par un produit de facteurs k_i inférieurs à l'unité.

$$l_{reelle} = \frac{l_{id}}{k_1 \, k_2 \, \dots \, k_n} \tag{5.95}$$

avec, pour un fabricant particulier

 $-k_1$, un coefficient dit de "condition atmosphérique",

$$0.7 \leq k_1 < 1$$

— k_2 un facteur d'embrassement pour des Ω inférieurs à π

$$0.6 \leq k_2 < 1$$

 $-k_3$, un coefficient dépendant de la disposition relative des poulies (inclinaison de la ligne des centres sur l'horizontale)

$$0.72 \leq k_3 < 1$$

Cette dernière valeur l_{reelle} doit encore être normalisée à un terme de la série R_{10} ou R_{20} suivant le diamètre.

A ce stade du calcul, il ne reste plus qu'à vérifier si la fréquence d'incurvation reste inférieure à la fréquence limite du matériau caractéristique du type et du matériau (voir Figure 5.25).

5.7.2 Courroies trapézoïdales

Normalisation

La normalisation des courroies trapézoïdales est régie par les normes suivantes : NBN 598-1963 et ISO/R 256 - R 434 pour type normal et NBN 640-1964 et ISO/R 578 pour type étroit.

La courroie à section trapézoidale est le plus souvent réalisée en matériau caoutchouté. Elle comporte un ou plusieurs lits de fibres textiles, localisés dans la moitié, supérieure du profil, dont le rôle est de reprendre les efforts développés dans la transmission. La surface extérieure de la courroie est en outre recouverte d'un tissu imprégné de caoutchouc vulcanisé qui améliore la résistance à l'usure et préserve la matière à coeur.

FIGURE 5.27 – La courroie trapézoïdale. a/ Type normal, b/ type étroit, c/ type étroit concave, d/ convexe Spesa Ver

Type normal 5.27-a

Les courroies sans fin de type normal sont élaborées en introduisant un angle au sommet de section droite 2 β allant de 32 à 38 degrés d'arc. Le rapport b/h de la grande base à la hauteur du profil varie de 1.5 à 1.65 en 7 types normalisés ISO généralement désignés chacun par une lettre ou par deux nombres correspondant l'un à la longueur de la grande base, l'autre à la hauteur du profil. Les types Y(6 x 4), Z(10 x 6), A(13 x 8), B(72 x 11), C(22 x 14), D(32 x 19) et E(38 x 25) sont actuellement normalisés par l'ISO.

Type étroit 5.27-b

Les courroies sans fin de type étroit sont des courroies à faible raideur flexionnelle préconisées dans le cas des vitesses périphériques importantes (v = 60 m/s). Ces courroies présentent un angle d'ouverture de profil compris entre 34 et 38 degrés d'arc. Le rapport b/h pratiqué est plus faible que précédemment. il peut varier dans l'intervalle [1.2 - 1.25].

Les courroies de type étroit permettent la transmission de fortes puissances avec des dimensions plus modestes que celles imposées par le type normal (encombremenL moindre). La conception concave-convexe, breveté par certaines firmes (Figure 5.27-c) présente les mêmes evantages, que les courroies étroites ISO mais dissipent moins de puissance en travail d'extraction à la sortie de la poulie à gorges (pénétration moindre dans la gorge).

Ces courroies particulières sont normalisées en 4 types différents : SPZ (9,7 x 8), SPA (12,7 x 10), SPB(16,3 x 13), SPC(22 x 18). Le type SPC n'est pas encore officiellement adopté par I'ISO.

Les courroies trapézoidales sont disponinles sur le marché dans une gamme de longueurs exprimées en mm allant de 200 à 16800 pour le type normal et de 630 à 8000 pour le type étroit (longueur primitive, mesurée sous tension initiale au niveau de l'axe neutre du profil trapézoidal).

A noter que les plus grandes longueurs sont relatives aux sections les plus fortes.

Calcul pratique des courroies trapézoïdales

Le calcul théorique d'une transmission par courroies trapézoidales peut difficilement être développé étant donné la structure composite de la section droite. Le matériau n'est ni homogène ni isotrope et les lois classigues de l'élasticité ne peuvent lui être appliquées simplement. Le calcul se déroule plutôt en respectant scrupuleusement les directives du fabricant, elles-mêmes inspirées des recomandations ISO. Les catalogues des produits commercialisés fournissent en effet toutes les indications requises pour le calcul et les dimensions à adopter en fonction des conditions réelles de service.

1. On calcule une puissance fictive P^* qui tient compte à la fois du facteur de service et du rendement

$$P^{\star} = f_s P_{mot} = \frac{f_s P_{rec}}{\eta}$$
(5.96)

avec $\eta \simeq 0,97$

- 2. Des abaques fournissent le moyen de choisir le type de courroie à bon escient. On en déduit une estimation du diamètre d_1 admissible (par interpolation). Les Figures 5.28 et 5.29 fournissent les courbes préconisées par la firme FENNER.
- 3. Le diamètre d_2 et la longueur normalisée de la courroie sont ensuite déterminés compte tenu du rapport de réduction i et de l'encombrement disponible.
- 4. Des tables fournissent ensuite la puissanxce unitaire caractéristique d'une courroie de type donné, en fonction des diamètres d_1 et de la vitesse périphérique v de la courroie.
- 5. Cette puissance unitaire doit encore être corrigée pour tenir compte des conditions réelles de fonctionnement. la firme FENNER propose par exemple :

$$P_1^{\star} = (P_1 + \Delta P_1) k_1 k_2 \tag{5.97}$$

où on a

- $-\Delta P_1$ est un accroissement de P_1 dû à un rapport de réduction non unitaire $i \neq 1$. ΔP_1 est à mettre en relation avec la moindre incurvation de la courroie sur la poulie de diamètre d_2 si le rapport de réduction est grand i > 1
- k_1 , un facteur d'endurance. C'est coefficient dépendant la longueur fourni en regard de la dimension L_N . k_1 est un coefficient qui tient compte de la variation de la fréquence d'incurvation F avec la longueur L_N .
- k_2 un facteur d'embrassement pour des Ω inférieurs à π . k_2 tient implicitement compte de la diminution de l'efforty périphérique maximum transmissible lorsque l'angle d'embrassement Ω devient inférieur à π lorsque i > 1.
- 6. Reste à déterminer le nombre de courroies à utiliser. Il suffit pour cela de diviser la puissance fictive P^* par la puissance unitaire corrigée :

$$x_{th} = \frac{P^{\star}}{P_1^{\star}} \tag{5.98}$$

Ce nombre doit être arrondi à l'unité supérieure. La poulie correspondante comportera évidemment le même nombre de gorges éventuellement un nombre supérieur.

Explication complémentaire. Pour le type B, par exemple, le diamètre d_1 varie de 125 à 200 mm et le nombre de courroies de 2 au minimium à 8 au maximum.

FIGURE 5.28 – Abaque FENNER pour le choix du type de courroie et limitation de d_1 . Cas de courroies trapézoïdales ISO de type normal

5.7.3 Courroies crantées

La courroie dite crantée est actuellement très utilisée dans l'industrie car elle réunit les avantages des courroies plates en matériau symthétique et ceux gui caractérisent les chaines (absence de glissement).

Ces courroies comportent une denture en matière plastique ou en caoutchouc

288

FIGURE 5.29 – Abaque FENNER pour le choix du type de courroie et limitation de d_1 . Cas de courroies trapézoïdales ISO de type étroit

moulée, dessinée à la face interne. Un lit de câbles d'acier fins, torsadés, (angle d'hélice très faible) est introduit au niveau de l'axe neutre de la section droite

FIGURE 5.30 – La courroie crantée : a/ constitution - b/ poulies à flasque unique

et reprend l'effort de traction. Pour les courroies crantées, on a

$$Q \simeq T \tag{5.99}$$

L'utilisation de telles courroies permet un réel gain de place; elles transmettent en effet sans problèmes des efforts périphériques allant jusqu'à 5000 N sans qu'il soit nécessaire de procéder à des remises sous tension périodiques. Elles permettent enfin un fonctionnement silencieux sans lubrification aucune, jusqu'à des vitesses périphériques de l'ordre de 60 m/s.

La dimension fondamentale est ici le pas de la denture. La Figure 5.31 fournit un abaque qui permet Ie choix du pas (L, H, XH) en fonction de la puissance P et de la vitesse de rotation n_1 .

Des tables permettent ensuite la détermination de la largeur de courroie nécessaire.

A noter que la petite poulie est équipée de flasques de guidaqe et qurelle comporte rarement moins de 14 dents.

FIGURE 5.31 – Abaque FENNER pour le choix du pas de la denture. Cas des courroies crantées (pas $p_L = 9.53$ mm, pas $p_H = 12, 5$ mm, pas $p_{XH} = 22, 23$ mm)

Annexe A LEXIQUE

Cette annexe a pour objet de définir un certain nombre d'expressions très fréquemment rencontrées dans la désignation des pièces de machine d'usage courant. Elles sont abondamment illustrées dans les figures suivantes.

Alésage : Trou ou ouverture cylindrique ou conique, généralement réalisé à l'aide d'un outil appelé alésoir. Par extension, l'alésage désigne aussi le diamètre de cette ouverture. (Fig. A.1-A).

Arbre : Corps de révolution allongé suivant son axe et tournant autour de celui-ci. (Fig. A.1-A, A.2-A, A.3-A et A.3-B).

Arrondi : Raccord de deux surfaces formant un angle sortant, engendré par un quart de circonférence. Les arrondis ont lê même rô1e que les chanfreins. (Fiq. A.4-A).

Axe : Pièce cylindrique fixe sur laquelle s'articule une autre pièce. (Fig. A.1-A, A.2-A, A.3-A, A.3-B).

Bossage : Surépaisseur d'une pièce, destinée à être dressée pour recevoir la face d'appui d'une tête de vis ou d'un écrou. (Fig. A.1-D, A.4-A et A.5-A.)

Boutonnière : Voir "Trou ovalisé"

Bride : Couronne terminant un cylindre, un tuyau, ou un arbre, ayant pour fonction d'en permettre l'assernblage avec une pièce analogue à l'aide par exemple de boulons. Cette appellation désigne également des pièces rapportées le même rôle ou des rôles analogues. (Fig. A.1-B).

Buselure : Pièce cylindrique creuse destinée à se loger dans un alésage. (Fig. A.1-C)

Came : Pièce profilée animée d'un mouvement de rotation communiquant à une tige un mouvement rectiligne alternatif suivant une loi déterminée. (Fig. A.2-A).

Chambrage : Evidenent pratiqué dans un alésage. (Fig. A.2-B et A.6-A).

Chanfrein : Petite surface formée en abattant l'arête d'une pièce en vue de la rendre moins fragile, d'en faciliter le montage, d'éviter les accidents que peuvent produire les arêtes vives, d'en améliorer l'aspect. (Fig. A.1-A, A.2-C et A.3-D).

Chape : Sorte de fourche permettant la liaison de deux pièces par l'intermédiaire d'un axe d'articulation. (Fig. A.2-A).

Clavette : Pièce destinée à l'assemblage se logeant dans ies mortaises ou des rainures pratiquées dans 1es deux pièces à assembler. (Fig. A.2-A et A.2-D)

Collet : Voir définition à "Epaulement". (Fig. A.1-A et A.3-D).

Congé : Raccord de deux surfaces formant un angle rentrant généralement engendré par un quart de circonférence, utilisé en vue d'augmenter la résistance des pièces ou d'en faciliter le moulage. (Fig. A.1-A).

Coussinet : Buselure en une ou deux pièces, éventuellement nunie d'oreilles ou de joues dans laquelle tourne le tourillon d'un arbre. (Fig. A.3-A).

Dégagement : Voir "sortie d'outil".

Dépouille : Inclinaison donnée aux surfaces en vue d'assurer la possibilité ou l'aisance du démoulage. (Fig. A.1-D et A.4-A).

Douille : Pièce cylindrique ou conique creuse posée sur une pièce pleine. (Fig. A.1-D, A.2-D et A.3-B).

Embase : Voir définition à "Epaulement". (Fig. A.1-A etA.3-D)

Encoche : Rainure très courte ne débouchant que d'un côté de la pièce. c'est également petite entaille servant de logement à un ergot. (Fig. A.3-C).

Epaulement : Dans les pièces de révolution, couronnes circulaires normales à l'axe résultant des variations brusques de diamètre. L'épaulement sert souvent de butée à un autre organe. Deux épaulements très proches d'égal diamètre extérieur, forment sur l'arbre un "collet" ou "embase". (Fig. A.3-D).

Ergrot : Saillie ménagée notamment à la base de la tête d'un boulon (lorsque cette tête est de révolution) qui, en se logeant dans une encoche, empêche le boulon de tourner lors du serrage de l'écrou. (Fig. A.3-C).

Evidement : Partie de suface réalisée en retrait de la surface nornalement prévue pour limiter l'étendue des surfaces portantes. (Fig. A.2-C et A.4-A)

Fraisure : Evasement conique creusé à l'orifice d'un trou en vue notamment de loger la tête conique d'un rivet, d'une vis ou d'un boulon. Fig. A.2-A et A.7-B).

294

Galet : Petit rouleau tournant autour de son axe, à surface cylindrique ou torique. (Fig. A.2-A)

Goupille : Tige ou broche, cylindrique ou conique, destinée à l'assemblage, à l'immobilisation, au repérage de deux pièces (Fig. A.7-A et A.1-C).

Gorge : Rainure circulaire de forme arrondie pratiquée dans une pièce de révolution. (Fig. A.3-D et A.4-C).

Lamage : Creux cylindrique à fond plat de faible longueur, pratiqué à l'entrée d'un trou cylindrique, par fraisage ou lamage, jouant le mêrne rôle qu'un bossage. (Fig. A.5-A).

Languette : Saillie d'une pièce se logeant dans une rainure, dans le cas d'assemblages glissants. (Fig. A.6-C).

Manchon : Pièce cylindrique creuse à placer sur des pièces cylindriques pleines, pour en assurer notamment l'assemblages glissants. (Fig. A.7-D et A.5-C).

Maneton : Partie cylinCrique d'une manivelle ou d'un arbre coudé sur laquelle s'articule une tête de bielle. (Fig. A.5-D).

Méplat : Partie plate ménagée sur une pièce cylindrique. (Fig A.5-B).

Mortaise : Trou ou cavité à faces (champs) planes, recevant le tenon d'une autre pièce. (Fig A.2-D et A.5-E).

Nervure : Elément reliant deux parties d'une même pièce en vue de leur renforcement ou leur consolidation (Fig. A.4-A).

Palier : Organe servant de support pour les arbres, recevant le tourillon dans un coussinet ou un roulement. Fig. A.6-A).

Pivot : Partie cylindrique terminale d'un arbre disposé verticalement par laquel il est supporté. (Fig. A.6-B) .

Rainure : Ouverture de section constante et de grande longueur par rapport à sa section. (Fig. A.1-A, A.2-D et A.6-C).

Saignée : Entaille ou rainure cylindrique à arrêtes vives pratiquées dans une pièce cylindrique. (Fig. A.3-D)

Sortie d'outil : Dégagement pratiqué dans une pièce spécialement en vue d'en faciliter le parachèvement. (Fig. A.2-C et A.7-A).

Surface moletée : Surface légèrement rainurée par deux réseaux de rainures à 90°, donnant un aspect gaufré. Elles sont généralement destinées à assurer une meilleure prise de l'objet, en évitant le glissement de la main. (Fig. A.7-C).

Tourillon : Partie cylindrique d'un arbre par laquelle il est supporté dans son mouvement de rotation (voir coussinet et palier). (Fig. A.1-A).

Tenon : Partie d'une pièce s'engageant dans un trou ou cavité appelé "mortaise" ménagé dans une autre pièce. (Fig. A.5-E).

Téton : Tenon cylindrique de petites dimensions, notamment bout cylindrique lisse d'une vis. (Fig. A.7-D).

Trou borgne : Trou qui n'est pas foré de part en part de la pièce, c'est-à-dire ne débouchant pas. (Fig. A.6-D).

Trou ovalisé : Trou allongé, en forme de boutonnière, fréquemment substitué à un trou cylindrique, de manière à permettre le réglage des pièces au montage. (Fig. A.5- A).

Vis entre cuir et chair : vis placée "à cheval" sur deux pièces cylindriques emmanchées, pour empêcher un déplacement relatif angulaire. (Fig. A.7-B).

FIGURE A.1 – Arbres, Tourillon, Chanfrein, Congé, Rainure, Collets, Embases, Brides, Buselure, Dépouille, Bossage, Douille.

FIGURE A.2 – Came, Clavette, Goupille, Chape, Galet, Axe, Chambrage, Chanfrein, Evidemment, Dégagement d'outil, Douille, Manchon, Mortaise, Clavette, Rainure.

FIGURE A.3 – Orielle, Joue, Coussinet, Arbre, Alésage, Bague flottante, Douille, Encoche, Ergot, Gorge, Epaulement, Saignée, Collet, Embase, Chanfrein

FIGURE A.4 – Dépuille, Nervure, Arrondi, Bossage, Evidemment, Fraisure, Goupille, Gorge.

FIGURE A.5 – Bossage, Lamage, Méplats, Manchon, Maneton, Tenon, Mortaise.

FIGURE A.6 – Pallier, Contre-joue, Trou ovalisé, Chambrage, Fraisure, Pivot, Rainure, Languette, Trous borgnes.

 ${\rm Figure}$ A.7 – Sorties d'outils ou dégagements, Fraisure, Vis entre cuir et chair, Surface moletée, Téton.

304

Bibliographie

- AGMA. Fundamental rating factors and calculation methods for involute spur and helical gear teeth, ansi/agma standard 2001-b88. Technical report, American Gear Manufacturers Association, 1500 King Station Suite 201, Alexandria, Va., 22314, 1988.
- [2] AGMA. Geometry factors for determining the pitting resistance and bending strength of spur, helical, and herringbone gear teeth, ansi/agma standard 908-b49. Technical report, American Gear Manufacturers Association, 1500 King Station Suite 201, Alexandria, Va., 22314, 1989.
- [3] M. Aublin, R. Boncompain, M. Boulaton, D. Caron, E. Jeay, B. Lacage, and J. Rea. Systèmes mécaniques - Théorie et dimensionnement. Dunod, Paris, 2005.
- [4] C. Barlier and R. Bourgeois. Ingénierie et mécanique : conception et dessin. MEMOTECH Plus. Lavoisier, Paris, 2010.
- [5] J. Bozet. Dimensionnement des Eléments de Machine. Centrale des Cours de l'A.E.E.S, Université de Liège, 1996.
- [6] A. Brand, J. Flavenot, R. Grégoire, and C. Tournier. Données technologiques sur la fatigue. CETIM, Paris, 1992.
- [7] R. Cazaud, G. Pomey, P. Rabbe, and C. Janssen. La fatigue des métaux. Dunod, Paris, 1969.
- [8] J. A. Collins. Failure of Materials in Mechanical Design : analysis, prediction, prevention. Wiley-Interscience publication, New York, 1993.
- [9] H. Gough and H. Pollard. The strength of metals under combined alternating stress. Proceedings of the Institution of Mechanical Engineers, 131(3–18), 1935.
- [10] H. Gough, H. Pollard, and W. Clenshaw. Some experiments on the resistance of metals to fatigue under combined stresses. Technical report, Aeronautical research council reports, London, 1951.
- [11] O. Horger. Metals Engineering Design ASME Handbook. Mc Graw Hill, 1953.

- [12] W. Lewis. Investigation of the strength of gear teeth, an address to the engineer's club of philadelphia, october, 1892. *Gear Technology*, 9(6) :19, 1992.
- [13] T. Nishihara and M. Kawamoto. The strength of metals under combined alternating bending and torsion with phase difference. *Mem. College Eng. Kyoto Imper. University*, 11(5):85–112, 1945.
- [14] R. Norton. Machine Design. An integrated approach. Prentice Hall, Upper Saddle River, N.J., 1998.
- [15] R. Peterson. Stress concentration design factors. John Wiley and Sons, New York, 1st edition, 1953.
- [16] W. D. Pilkey and D. F. Pilkey. Peterson's Stress Concentration Factors. John Wiley and Sons, New York, 3rd edition, 2008.
- [17] L. Van Miegroet and P. Duysinx. Stress concentration minimization of 2d filets using x-fem and level set description. *Structural and Multidisciplinary Optimization*, 33(4) :425–438, 2007.