TRANSMISSION PAR COURROIE ET POULIES DIMENSIONNEMENT

Pierre Duysinx

Aérospatiale & Mécanique Année académique 2016-2017

LAY-OUT

- Dimensionnement
 - Courroies plates
 - Courroies trapézoïdales
 - Courroies crantées

- La normalisation des courroies est régies par les normes NBN 470-1957 et 583-1961 ISO/R22 et R63
- Les diamètres sont étagés de 40 à 2000 mm en suivant la série des nombres normaux R₂₀.
- Les largeurs de courroie et de jante de poulie sont étagées de 20 à 630 mm en suivant la série des nombres normaux :
 - R₁₀ pour les largeurs de 20 à 63 mm
 - R₂₀ pour les largeurs de 63 à 630 mm
- On notera que la largeur de jante est en général la valeur R₂₀ juste supérieure à celle retenue pour la courroie

R5	R10	R20	R20		
10	10	10	100		
		11	112		
	12	12	125		
		14	140		
16	16	16	160		
		18	180		
	20	20	200		
		22	224		
25	25	25	250		
		28	280		
	32	32	315		
		36	355		
40	40	40	400		
		45	450		
	50	50	500		
	<u> </u>	56	560		
63	63	63	630		
		70	710		
	80	80	800		
	8	90	900		
100	100	100	1000		

Liste des nombrel normaux de La progression géométrique de raison 10^(1/10) et 10^(1/20)

- Les longueurs L de courroies plates sans fin sont mesurées sous tension initiale, au niveau de la face de contact. Les longueurs normalisées sont étagées à partir de 500 mm et correspondent aux termes successifs de la série R₂₀.
- Des valeurs de L non normalisées sont utilisées dans certains cas: l'utilisation d'un dispositif de "jonctionnement" est rendue indispensable A noter que les courroies jonctionnées sont très nettement déforcées par rapport aux courroies sans fin de même section.

	Résistance de la jonction par rap- port à celle d'une courroie intacte				
Callana	Colle à cuir		80 à 85%		
Collage	Colle à caoutchouc		80 à 85%		
Couture	Lanières tannées en suif		30%		
	Cordes en boyaux		50%		
	Boulons et couvre-joints (aboutement)	88	30%		
Agrafage	Boulons et couvre-joints (peigne)		25%		
	Agrafes en acier ou spirales à tige		50 à 80%		

La formule d'Euler nous a permis d'écrire

$$\begin{cases} \bar{t} = t - m'v^2 = \bar{Q} \frac{1}{e^{\mu \Omega} - 1} \\ \bar{T} = T - m'v^2 = \bar{Q} \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1} \end{cases}$$

- Avec T, t, les efforts appliqués à la courroie, m' est la masse par unité de longueur de la courroie, v est la vitesse périphérique de la courroie, Tbar est l'effort maximum récupérable à la jante, μ le coefficient de frottement moyen service, Ω l'angle d'embrassement apparent, mesuré sur la petite poulie.
- Qbar est l'effort périphérique maximum prévisible
 Qbar = Q x facteur de service,

- Calculons la section nette de courroie S qui permet la transmission de l'effort périphérique Q, le lien flexible étant à la limite du glissement.
- Si R est la tension admissible disponible en traction, caractéristique du matériau et de la géométrie de la transmission

$$T = SR$$

■ La masse m' calculée par unité de longueur peut également s'exprimer en fonction de la section nette.

$$m' = S \rho$$

Où ρ est la masse volumique du matériau de la courroie

Il vient

$$S\left(R - \rho v^2\right) = \bar{Q} \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1}$$

d'où l'expression de la section nette:

$$S = \frac{\bar{Q}}{R - \rho v^2} \frac{e^{\mu \Omega}}{e^{\mu \Omega} - 1}$$

La section nette nécessaire S est d'autant plus faible gue le produit $\mu\Omega$ est élevé. Un coefficient de frottement plus élevé, un plus grand entraxe ou un plus petit rapport de réduction i conduisent à une meilleure utilisation du matériau constitutif de la courroie.

- Une première remarque s'impose à propos de la tension admissible : la courroie est à la fois soumise à un effort de traction T et aux contraintes qui résultent de son incurvation sur la longueur des arcs de contact au niveau des jantes. Les tensions de flexion qui en résultent sont évidemment les plus élevés au niveau de la poulie de petit diamètre d₁.
- Estimation de l'abaissement de la contrainte admissible suite à la superposition d'une contrainte de flexion:
- La relation permettant le calcul de la tension réelle admissible en traction R:

$$R = R^* - \sigma_f = \frac{R_0}{K} - E_f \frac{e}{d_1}$$

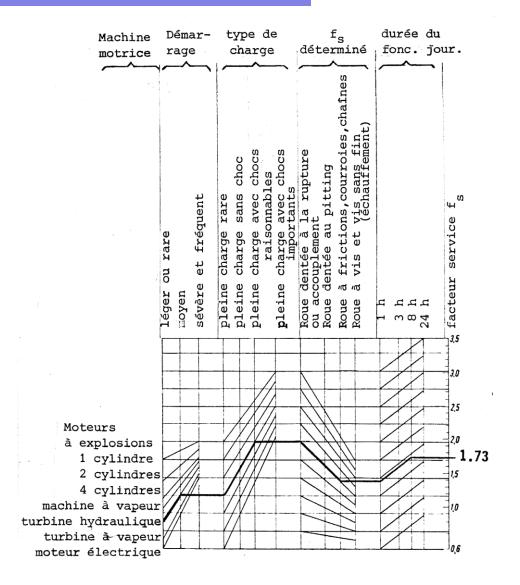
• où K est un coefficient de sécurité.

- Estimation de la contrainte de flexion dans la courroie σ_f qui s'ajoutent aux tensions de traction induites par l'effort T.
- Soient e l'épaisseur de la courroie, E_f son module d'élasticité à la flexion.
- Confondons l'axe neutre avec la fibre moyenne de la courroie enroulée sur le rayon d/2 de la poulie.
- La courbure étant constante, il y correspond un moment de flexion pure et, par voie de conséquence
- Il vient la déformation

$$\epsilon = \frac{e/2}{r_1 + e/2} \qquad \qquad \epsilon = \frac{e}{d_1}$$

En utilisant la loi de Hooke, on a la contrainte de flexion

$$\sigma_f = E_f \frac{e}{d_1}$$


		· · · · · · · · · · · · · · · · · · ·		.							
Type de	Tension de	Module de	Coef.	Tension	Module de	Rap.	Densité	Fréqu.	Vi te sse	Coefficient	Temp.
courroi	rupture à la	Young en	đe	admissible	Young en	maxi.	$(\rho = 10^3)$	limite	périph.	đe	max. de
Matériau	traction	traction	sécurité	totale	flexion	<u>e</u>	en[kg/m³])	d'endu-	max.	frottement	fonct.
utilise	$\mathbb{R}_0 \text{ en } [N/\text{cm}^2]$	E_{+} en $[N/cm^{2}]$	K	*[77/27	E en[N/cm ²]	d ₁		rance en	v en	(+)	Θ [°C]
		T T		R enthycm	I			[s ⁻¹]	max [m/s]	f	max
Cuir	-							<u> </u>	<u> </u>		-
			_	252	50009000	0 022	1 0	5	30	derme	35
type S	2500	25000	67	360410				_	1		
G	3000	35000	67	430500	40008000	1 -	0,95	10	40	0,22 + 0,012 w	
HGI	90001000	45000	67	430650	30007000		0,9	25	50	épiderme	45
HGC	30004500	45000	67	430750	30007000	0,05	0,9	25	50	0,33 + 0,02 w	70
Tissus											
-imprégné	s										
Co-Ba	50006500	90000150000	1215	330540	5000	0,04	1,25	30	40	0,5	40
Ca-Ba-Co	50006000	35000120000	1115	330540	5000	0,035	1,2	30	40	0,5	45
Ca-Co	45006000	50000130000	1215	300500	5000	0,033	1,25	30	40	0,5	70
-non impr	.T	T									F 1
Co	35005000	50000140000	1015	230500	4000	0,05	1,3	40	50	0,3	-
soie art	5000	·	1015	330500	4000	0,04	1,0	40	50	0,35	-
nylon- perlon	1800022000		1012	16502200		_	1,11,15	80	65		_
C. Composit	ě										
contact									80	comme pour	
Cuir/Ca									éventuel		4070
résistano	e 1800022000	55000	1012	16502200	55000	0,01	1,11,2	80	jusqu'à	0,75	7080
mat.Plast	:.								100	7,13	17080
C. trap.								, .			
- normale	s -	50000 440000						40	2530		
- de type		50000140000		700900	5000	-	1,25			0,35 + 0,012 w	7080
étroit			-					5080	60		

⁽⁺⁾Dans l'expression du coefficient de frottement, w est la vitesse de glissement d'ensemble exprimée en cm/sec. Pour les courroies
trapézoidales, le tableau fournit la valeur du coefficient de frottement matière à matière

Légende : Co : coton ; Ba : balata ; Ca : caoutchouc

^{*} Structure en couches superposées de matériaux collés

- Remarque concernant la valeur de l'effort périphérique Qbar à introduire dans la formule de la section nette.
- La force tangentielle dépend du couple transmis, grandeur qui peut être fortement variable dans le cycle. On en tient compte en pratique en introduisant un <u>facteur service</u> f_s, supérieur à l'unité, qui dépend à la fois du type de <u>machine motrice et réceptrice</u> ainsi que des <u>conditions de fonctionnement</u> spécifiques à l'installation (poussière, eau, huile, température élevée, etc.)
- En première approximation, et en l'absence de directives précises émanant d'un fabricant, on peut adopter les valeurs proposées dans l'abaque de Richter-Ohlendorf

Tracé à titre exemplatif: turbines hydrauliques, démarrage moyens, pleine charge avec chocs raisonnables, courroies, 8 heures par jour donne f=1.73.

- Les fabricants de courroie fournissent généralement des nomogranmes et des coefficients de correction pour le calcul rapide d'une transmission par courroie.
- Ces <u>abaques</u> tiennent compte de la vitesse circonférentielle v, du type de courroie (largeur), du diamètre de la plus petite poulie (d_1) et de l'angle d'enroulement Ω de la courroie sur cette dernière.
- L'abaque principal fournit la <u>puissance P₁ transmissible par cm</u> <u>de largeur pour une courroie de type (d'épaisseur) donné</u>, en fonction de la vitesse périphérique v.

- Pour chaque type de courroie, le fabricant indique également le diamètre d₁ minimum préconisé, pour une bonne utilisation du lien flexible.
- Supposons tout d'abord que P_{out} et N_{out}, respectivement la puissance et la vitesse de rotation imposées à la poulie réceptrice soient les données fondamentales du problème.
- Dans ces conditions, on déterminera la largeur nécessaire en respectant la démarche qui va être expliquée.

- 1/ On choisit les diamètres d₁ et d₂ normalisés R₂₀ en fonction du rapport de réduction i nécessaire et de l'encombrement limite toléré.
- 2/ Compte tenu d'un entraxe approximatif choisi en fonction du type de courroie, on détermine la longueur normalisée la plus proche LN et l'entraxe réel correspondant.
- \rightarrow La géométrie est ainsi parfaitement définie : d_1 , d_2 , L_N et $EA_{réel}$ sont à présent connus.

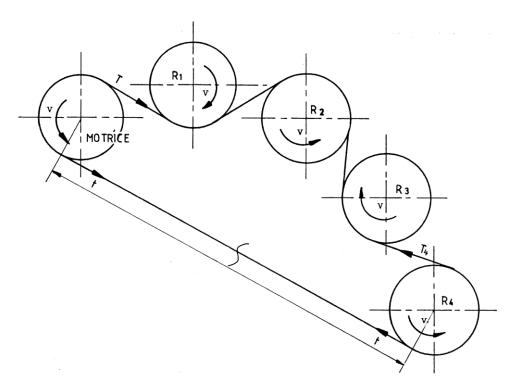
- 3/ L'épaisseur de la courroie caractérise le type. Cette épaisseur sera choisie en fonction du matériau utilisé et du diamètre d₁.
- Dans la mesure du possible, il est conseillé d'utiliser la formule de bonne pratique suivante :

$$e = d_1/100 + 3 \,\mathrm{mm}$$

 avec d₁ en mm. L'épaisseur approximative permet la détermination du type qui répond le mieux à l'application.

- 4/ Le type étant déterminé, l'abaque (P1, v, type) est utilisable pour la vitesse \$v\$ de fonctionnement de l'application.
- On détermine la puissance P1 (en kW/cm) caractéristique du type, dans le cadre des conditions particulières qui ont été fixées lors de la construction de l'abaque.
- Une largeur idéale s'en déduit :

$$l_{id} = \frac{f_s P_{mot}}{P_1} = \frac{f_s P_{rec}}{P_1 \eta}$$


avec η le rendement global qui vaut approximativement η=0.97.

■ 5/ Cette largeur idéale doit être majorée pour <u>tenir compte des</u> <u>conditions réelles de l'utilisation</u>. l_{id} est dès lors divisé par un produit de facteurs k_i inférieurs à l'unité

$$l_{reelle} = \frac{l_{id}}{k_1 \, k_2 \, \dots \, k_n}$$

- avec, pour chaque fabricant particulier
 - k₁, coefficient dit de "condition atmosphérique",
 - k_2 facteur d'embrassement pour des Ω inférieurs à π
 - k₃, disposition relative des poulies (inclinaison de la ligne des centres sur l'horizontale
- Cette dernière valeur de largeur réelle l_{réelle} doit encore être normalisée à un terme de la série R₁₀ ou R₂₀ suivant le diamètre.

 A ce stade du calcul, il ne reste plus qu'à vérifier si la <u>fréquence</u> <u>d'incurvation</u> reste inférieure à la fréquence limite matériau caractéristique du type ou du matériau

