TP 2 - Mécanisme - Arbre - Engrenages

Exercice 1

On considère la transmission de puissance d'une perceuse à quatre broches (voir figure 1). Les quatre forets travaillent simultanément et dépensent une puissance de 2 kW, à une fréquence de rotation de 500 tr/min. Ils sont entrainés par l'arbre intermédiaire, à l'aide d'engrenages coniques 29/17.

L'arbre intermédiaire est quant à lui mû par l'arbre de commande, à travers un engrenage conique 22/31.

On demande:

- 1. La fréquence de rotation de l'arbre intermédiaire
- 2. La fréquence de rotation de l'arbre de commande
- 3. D'établir le rhéogramme des puissances et d'en déduire les puissances dans les tronçons AB, BC, CD, DE et dans l'arbre de commande
- 4. De déterminer les moments de torsion dans les tronçons AB, BC, CD, DE et dans l'arbre de commande
- 5. De calculer par la formule des arbres de manège un diamètre constant pour l'arbre intermédiaire et un diamètre pour l'arbre de commande

Exercice 2

Déterminez la contrainte maximale admissible pour un arbre en acier St 60 en rotation uniforme reposant sur deux appuis avec une charge concentrée en son milieu. L'arbre a les caractéristiques suivantes :

Diamètre : 20 mmLongueur : 500 mm

Calculez aussi la charge et la flèche maximale.

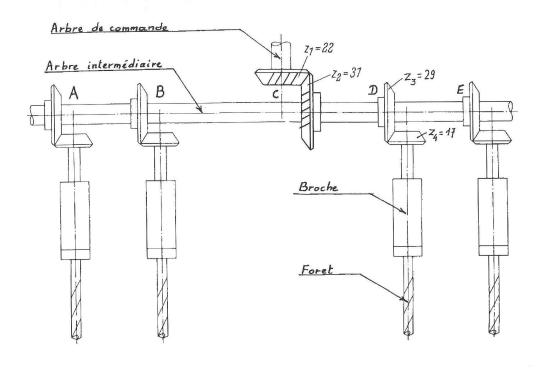


FIGURE 1: Perceuse à quatre broches

Exercice 3

Soit un arbre de transmission sur deux appuis d'extrémité ayant en son centre une roue dentée, source d'effort tangentiel et radial. La fréquence de rotation de cet arbre est de $1500\ tr/min$. Il doit transmettre une puissance de $7\ kW$. Ses caractéristiques géométriques sont les suivantes :

- Diamètre de l'arbre : 20 mm
- Longueur : 200 mm
- Diamètre de la roue dentée : $200 \ mm$

Quelle doit être la qualité de l'acier pour résister?

Exercice 4

On considère le réducteur à 3 étages (figure 2), utilisé pour changer l'orientation de la rotation et pour réduire la fréquence de rotation dans le système ($N_{sortie} < N_{entrée}$).

Le réducteur dispose d'une puissance à l'entrée $P{=}10~kW$ et d'une fréquence de rotation $N_{entrée}=1000~tr/min$.

Les caractéristiques des engrenages :

- $-Z_1=13$; $Z_2=16$; $Z_3=15$ (Z= nombre des dents)
- $-Z_4=22; Z_5=17; Z_6=29$
- $-m_{12}=4$; $m_{34}=3$; $m_{56}=5$ (m = module)

Les caractéristiques de ce réducteur sont présentées dans le tableau suivant. Complétez ce tableau.

Zone	Puissance (W)	$M_t (Nm)$	N(tr/min)	v (m/s)	Q - effort (kN)
AB				_	_
BC					
point X					
DE					
EF					_
point Y					
HG					
GI				_	
IJ					
point W			_		
KL				_	_
LM					<u>-</u>

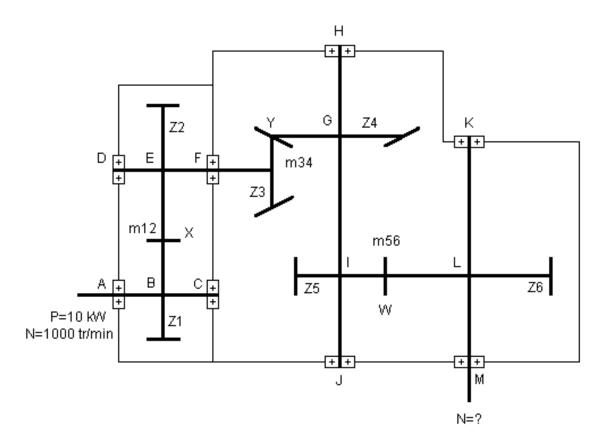


FIGURE 2: Réducteur à 3 étages

Exercice Supplémentaire

On considère un système de transmission de puissance tel que représenté à la figure 3. Les caractéristiques des engrenages sont les suivantes :

- Z1 = 12
- Z2 = 60
- Z3 = ?
- Z4 = 140

On sait que pour des raison de facilité l'arbre intermédiaire représenté en vert tourne à $1000~\rm tour/min$ lorsque le véhicule atteint les $30~\rm km/h$ et que la puissance aux deux sorties doit pouvoir maintenir ce véhicule de $60~\rm kg$ à cette vitesse sur une pente de $15~\rm degré$. Les équations du véhicule nous donnent les forces de résistance :

$$F_{res} = \frac{1}{2}\rho_{air}SC_xv^2 + f_r mgcos(\theta) + mgsin(\theta)$$
 (1)

Le véhicule a des roues de rayon 0.274 m, une surface frontale $S=0.95~m^2$, un coefficient de trainée $C_x=0.28$ et un facteur de résistance au roulement $f_r=0.0136+0.4*10^-7*v^2$. Attention vitesse en m/s.

L'abre de transmission en vert est sur deux appuis ayant en son centre une roue dentée source d'effort tangentiel et radial dont les caractéristiques géométriques sont les suivantes :

- Diamètre de l'abre : 30 mm
- Longueur : 1500 mm
- Diamtère de la roue dentée 100 mm

Déterminer :

- La vitesse aux roues en tr/min
- Z3
- La vitesse de rotation du moteur à 30 km/h
- La puissance nécessaire au moteur
- La limite élastique admissible de l'arbre vert en supposant une sécurité maximum (voir ex 3)

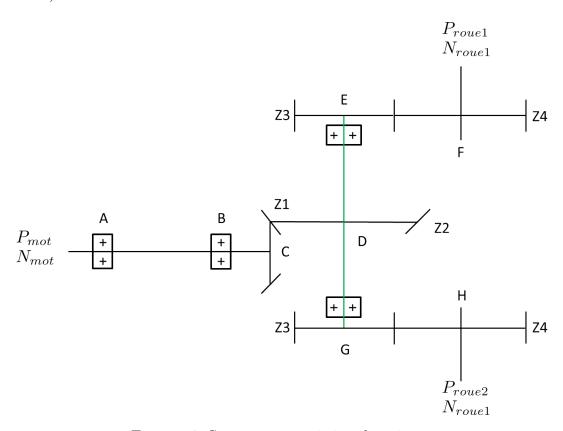


FIGURE 3: Système transmission de puissance