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Exercise 1: 
Steady State Cornering

Understeer Gradient Computation
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Exercise

◼ Let a vehicle A with the following characteristics:

◼ Wheelbase L=2,522m

◼ Position of CG w.r.t. front axle b=0,562m

◼ Mass=1431 kg

◼ Tires: 205/55 R16 (see Figure)

◼ Radius of the turn R=110 m at speed V=80 kph

◼ Let a vehicle B with the following characteristics :

◼ Wheelbase L=2,605m

◼ Position of CG w.r.t. front axle b=1,146m

◼ Mass=1510 kg

◼ Tires: 205/55 R16 (see Figure)

◼ Radius of the turn R=110 m at speed V=80 kph
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Exercise

Rigidité de dérive (dérive <=2°) :
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Exercise

◼ Compute: 

◼ The Ackerman angle (in °)

◼ The cornering stiffness (N/°) of front and rear wheels and axles

◼ The sideslip angles under front and rear tires (in °)

◼ The side slip of the vehicle at CG (in °)

◼ The steering angle at front wheels (in °)

◼ The understeer gradient (in °/g)

◼ Depending on the case: the characteristic or the critical speed (in 
kph)

◼ The lateral acceleration gain (in g/°)

◼ The yaw speed velocity gain (in s-1)

◼ The vehicle static margin (%)
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Exercise 1

◼ Data
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Exercise 1

◼ Ackerman angle

◼ Tire cornering stiffness of front wheels

◼ Tire cornering stiffness of rear wheels
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Exercise

Rigidité de dérive (dérive <=2°) :

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000 5000 6000

Charge normale (N)

R
ig

id
it

é
 (

N
/°

) 175/70 R13

185/70 R13

195/60 R14

165 R13

205/55 R16

8

1550

500



Exercise 1

◼ Side slip angles under the front tires
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Exercise 1

◼ Side slip angles under the rear tires

◼ Side slip angle at CG
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Exercise 1

◼ Steering angle at front wheels

◼ Understeer gradient
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Exercise 1

◼ Understeer gradient: check!

◼ Characteristic speed
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Exercise 1

◼ Lateral acceleration gain

◼ Yaw speed gain
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Exercise 1

◼ Neutral maneuver point

◼ Static margin

14



Exercise 2: 
Steady State Cornering

Developing analytical models: 
Baby kart
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Baby kart

◼ Dr Watson bought a baby carriage with 3 wheels for their baby. The 
three baby carriage wheels are the same. Front wheel is equipped with 
a hand brake. All wheels are fixed. None of them can be steered. 

◼ The wheelbase is L=1 meter and the gross weight is 20 kg. The center 
of gravity is located 0.3 m in front of the rear axle. The handlebar is 
located 0.2 m behind the rear wheels.
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Baby kart

◼ It is asked to solve the following questions:

◼ Is the baby carriage understeer, oversteer or neutral? Justify your 
answer. Where is located the neutral steer point.

◼ Complete the modelling sketch that is provided in Figure 2. Write 
the important parameters that are necessary to carry out the 
vehicle steady state cornering study a given constant speed V. 

◼ Revisiting the procedure developed in the lectures to investigate 
steady state cornering, derive the expression of the external yaw 
moment M to be developed around vertical axis by acting on the 
steering bar to follow a turn at speed V.

◼ Describe at least two methods to reduce the yaw steering moment 
calculated at point 3. We only consider actions that are compatible 
with a regular usage of the baby carriage. No structural or 
hardware modifications are allowed.
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Baby kart
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Oversteer / neutral /oversteer?

◼ The question can be solved in different ways. One natural 
approach is to consider the neutral point position of the 
babykart.

◼ The static margin writes

◼ A vehicle is

◼ Neutral steer if e = 0

◼ Under steer (K>0) if e<0 (behind the CG)

◼ Over steer (K<0) if e>0 (in front of the CG)
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Oversteer / neutral /oversteer?

◼ Neutral point does not call for any consideration of steering 
system but is basically founded on the steering capacity of front 
and rear wheels.

◼ Front axle cornering stiffness

◼ Rear axle cornering stiffness
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Oversteer / neutral /oversteer?

◼ The neutral point position is

◼ The baby kart is oversteer!
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Oversteer / neutral /oversteer?

◼ Alternatively, one could have noticed that the understeer 
gradient does not depend on the existence of any steering 
system. So one can evaluate the understeer gradient of the 
baby kart

◼ It comes

◼ And the vehicle oversteer
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Bicycle model of the baby kart
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Side slip af angle 
becomes positive 
because of positive 
lateral velocity. So 
front lateral forces are 
pointing to the left of 
the vehicle

Steering moment about 
vertical axis Mz=F.d
created by the force 
exerted on the handlebar

Side slip ar angle is 
supposed to be 
negative (a<0) to 
counteract the 
centrifugal forces

Velocity vector is 
perpendicular to the 
position vector to center 
of turn



Equation of the baby kart

◼ The bicycle model will be revisited. One has to adapt the three 
sets of equations

◼ Equilibrium equations

◼ Behavior equations

◼ Compatibility equations

◼ Then they can be combined to predict the steering moment to 
follow a circular motion with a given radius and at a given 
speed.
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Equilibrium equations of the vehicle

◼ Equilibrium equations in lateral direction and rotation about z 
axis

◼ Solutions (see next slide)

The lateral forces are in the same ratio as the vertical forces under 
the wheel sets
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Equilibrium equations of the vehicle

◼ Solving

◼ Can be made by using Cramer’s rule
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Behaviour equations of the tires

◼ Cornering force for small slip angles

Gillespie, Fig. 6.2
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Compatibility equations

◼ Compatibility equation consists in evaluating the side slip angles 
in terms of the velocities
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Because of 
assumption ar<0!

Because of 
assumption af>0



Compatibility equations

◼ The velocity under the rear wheels are given by

◼ The compatibility of the velocities yields the slip 
angle under the rear wheels
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Compatibility equations

◼ The velocity under the front wheels are given by

◼ The compatibility of the velocities yields the slip angle under the 
front wheels
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◼ Steering angle as a function of the slip angles under front and 
rear wheels

◼ This gives relation between the steering angles and the 

Steering angle
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Correction due to side slipAckerman angle



Steering angle

◼ Steering angle as a function of the slip angles under front and 
rear wheels

◼ Let’s insert the expression of the side slip angles in terms of 
lateral forces and of the cornering stiffness
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Steering angle

◼ It comes

◼ We finally end up with a similar expression to the steering 
system where the command M is related to Ackerman angle and 
to the understeer gradient
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Understeer gradient

◼ The steering angle is expressed in terms of the centrifugal 
acceleration

◼ If we define an effective cornering stiffness Ca
* that results from 

the serial layout of the tyres

◼ We have
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Understeer gradient

◼ The steering torque is expressed in terms of the centrifugal 
acceleration

◼ So

◼ With the understeer gradient K of the vehicle

◼ Which is the same as for the steered wheel vehicle because it is 
a characteristic of the vehicle and not of the steering/command 
system!
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Neutralsteer, understeer and oversteer vehicles

◼ If K=0, the vehicle is said to be neutralsteer:

The front and rear wheels sets have the same directional ability

◼ If K>0, the vehicle is understeer :

Larger directional factor of the rear wheels

◼ If K<0, the vehicle is oversteer:

Larger directional factor of the front wheels
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Steering angle as a function of V

Modification of the steering torque as a function of the speed
Characteristic and critical speeds 37



Characteristic and critical speeds

◼ For an understeer vehicle, the understeer level may be 
quantified by a parameter known as the characteristic speed. It 
is the speed that requires a steering angle that is twice the 
Ackerman angle (turn at V=0)

◼ For an oversteer vehicle, there is a critical speed above which 
the vehicle will be unstable
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Methods to reduce the steering torque

◼ Can we suggest methods to reduce the steering torque size?

◼ Method 1: reduce the wheelbase L

◼ Method 2: reduce the Ca*

◼ For our babykart

39



Methods to reduce the steering torque

◼ Method 2: to reduce the Ca*

which suggests taking tires with a lower Ca

◼ To reduce the Ca* as it is the serial arrangement of cornering 
stiffnesses, we can also take very low Caf or very low Car
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Methods to reduce the steering torque

◼ If we are not allowed to modify the structure of the kart
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Methods to reduce the steering torque

◼ If we are not allowed to modify the structure of the kart

◼ Method 1: Reinforce the oversteer character of the vehicle. For a 
given speed this will reduce the steering torque magnitude

◼ Parents can push downward on the handlebar to transfer the 
weight from front to rear axles 
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Methods to reduce the steering torque

◼ If we are not allowed to modify the structure of the kart

◼ Method 2: Parents can use the brake to create a large braking 
force on the rear wheels. Due to the friction ellipsis, the cornering 
coefficients will be reduced thus leading to an increase of the 
oversteer character
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REMARK

◼ One could have derived all equations by assuming a different 
sign of the side slip angles
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REMARK

◼ In the alternative assumption, one would get the following 
results if being fully consistent with his/her assumptions

◼ Equilibrium
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REMARK

◼ Constitutive / behavior equations

◼ Compatibility equations
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REMARK

◼ Deriving the steering torque relation
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REMARK

◼ Inserting the equilibrium and behavior equations

◼ This yields
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