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Lesson 3:

!'_ Dynamic vehicle stability
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!'_ Single track model



Single track model

= Stiff vehicle

= Pitch motion (g=0)

= Pumping motion (w=0)
= No body roll : p=0

= One can neglect any lateral load transfer leading to a reduction
of the lateral cornering stiffness when lateral accelerations
remain below 0.5 g (L. Segel, Theoretical Prediction and
Experimental Substantiation of the Response of Automobile
Steering Control, Cornell Aer. Lab. Buffalo. NY.)

= Constant speed forward motion: V
= Symmetry plane y=0: ], =0and ], =0



Single track model

= Small angles and perturbations
= Small steering angles (at wheel) 0 <1

= Small side slip angles a; < 1
— Linearized theory sind ~ ¢ cosd ~ 1
sin o ™~ « cosa ~ 1
CONCLUSION

= Linearized model with two degrees of freedom:
= Body side slip angle 3 (v)
= Yaw velocity r



Single track model
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Dynamic equations in vehicle body axes

= Newton-Euler dynamic equations

d
SF = ZmV)
d
= [ime differentiation in non inertial frame
v v
= — LTV
dt absolu dt relate f

= Equilibrium equations

Z? = m%?+mﬁx?
ST = %(Jﬁ)+ﬁx(ﬂ’)



Dynamics equations of the vehicle motion

v
= Model with 2 dof p & r V=yvulte? tanf=fxo
v,
V =[uv0]” G=1[007]7 Jxy = 0 5 /o
J,;=0
V = uey + ve, W= w,e, 6
= Inertia tensor ul B Fyf
Jow 0 T  [—
=0 J, 0 m
Sz 0 Jaz Ll x
= [t comes " m, J
WX U=w,€, X (U + V€y) = W U €y — W,V €y Vv,
— T
Jw = [Ja:ywz 0 Jzzwz] v v > F
G X JG = w8, X (W Jps€r + wod,2€r) = W2y, €,



i Dynamics equations of the vehicle motion

= Finally, dynamics equations write
X=) F. =m(i—-wow) L=Y M, =0
Y=Y F, = m@+wu) M=) M, = Jw

Z:ZFZ =0 N:ZMZ = J..w,

= The only nontrivial equations are

Y:ZFy = m (v + w,u)

N = ZMZ S i
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!'_ Equation of motion
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Dynamic equations in vehicle body axes

. 2 cof model Ly ey
L YIxy = i
Vo= [u v 0] ] = O
o = oo - ,
= Dynamic equations of motion 17 %} -
E, = m(+ru) : F g

N = Joi - v
= Equations related to the fixed dof |_ r C

. \/
- Reaction forces / moment
' C (xr m’ J
F, = —mruv
FZ = 0 i \ v F
L = Jy.r i g
_ 2 :
M = sz’f“ : F



Dynamic equations in vehicle body axes

Explanation

F,=—-mruv

] i V
Circular motion = —

R

V2
F, = —m — si
mRsmB

v

= —-m—=VsinB=-mro

R

Major working forces:
= Tyre forces

= Other forces (ex aerodynamic forces)
- Neglected because they don’t depend on
perturbations (in a first approximation)
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Dynamic equations in vehicle body axes

———————————————————————————————————————

= Equilibrium along F, and M,

o7]

m(0+ru) = Fy + Fypsind + F,pcosé Jyz: =
ST = —Fyrc+F$fsin5b+Fyfcoséb+Tzf+TzrE

N /
_ i %’ Fy
= Small angles assumption g F.

Be0°,15°] B~v/u~v/V  uw = Vceosfx=V u V
v = Vsing~V g L , K>
Q

sind ~ ¢ cosd ~ 1

= Linearized equilibrium

mV(B+r) = Fy+Fy+Fu 0
St = —Fyc+Fypb+Fopdb+ T, +T,,
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i Dynamic equations in vehicle body axes

= If we neglect the self aligning torques and the tractive forces in
a first step

Fyr"‘Fyf

mV(ﬁ + )
—Fyr c+ Fyf b
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Compatibility equations

= Compatibility = relations between
velocities and angles

br + v _oa—v
tan (0 —ayf) = T tana, = »
U

= Small side slip and steering angles

br + v
u B~v/u

afzé—

cr —v

e o
U

n Ifu=V ~ 5_6_7“_5

af_

———————————————————————————————————————
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Behavioural equations of tyres

= Cornering forces and side slip angles

Fyf:Cafaf Fy'r: arQr

_________________________________________________________________________________
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Source: Gillespie (fig 6.2)



Vehicle dynamic model

= Dynamic equilibrium

mV(B+71) = FEy+ Fyy
Joot = —Fyc+Fyb

= Let’s introduce the behaviour law of tyres

mV(B +7) = Corar + Chray
Joot = —Cuorapc+Corapd

= And then the compatibility equations
mV(B+r) = Car((r =B+ Cap(6— 37 — )

J.oh = —Cor(—B)c+Cuf(d—=—0)b
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Vehicle dynamic model

= Reshuffling the terms in 3, r, and 3, one gets the equations
related to the lateral forces and the moments about vertical axis

1

mV(B+r) = ~(Caf + Car)B = (b Cay — ¢ Car) > 7+ Cay 6
1
Jo.r = _(bCaf_Cca’r')ﬁ—(bzcaf_{_CQCar)VT—}_bCafé
= And so
. 1
mV(6+T)+(Caf+Cm)B+(bCaf—CCM)VT‘ = Cqur 0
1
Jzzw(bcaf—ccm)5+(b20af+czcw)vr = bCoyd
\ }
| | Y \ Y } S
Differential terms Terms in r and B Control terms in &

inrand B 20



Vehicle dynamic model

= Dynamic equations ruling the motion of the single track vehicle

) 1
mV(B+71)+ (Cof+ Cor) B+ (bCof — CCQT)V r = Curd
1
ST+ (b Caf — CCOW) B+ (bz Caf + c? CQT)v T o= bCaf )
________________________ Velocity T Velocity!
h 5 |
O L0
F " F/J .
Ax,u,p o “4 v
> LT '
Z,W,r y,v.q v
Q, C o.m,J
i |
2 F
(i - )
;_ ____________________ I_: ___________________________ I_:xr_________: 21



Stability derivatives

= Alternatively, it is the equivalent to perform a linear Taylor
expansion of the forces and moments around the current
configuration (that is reference configuration)

oF, 8F 8F

= 55 57" o 250
N - 6]; i 8N %Jgf 5
= [t is usual to denote them as stability derivatives
-0y OBy O
N, = ON 0N 0N

Bk ~or 96

22



Stability derivatives

= Comparing with the initial developments,

: 1
mV(ﬁ-l-?“) = —(Caf+0ar)ﬁ—(b0af—cCar)Vfr-l—Oach

1
ST = —(b Caf — CCO”«)B — (b2 Caf —+ 2 COW)V r 4 bCaf )

= one finds the expression of the stability derivatives

Yg = —(Cay+Car) (<0) Ng = —(bCay—cCar)

1 1
Y, = —(b%c—ccm)v N, = —(szaf—FczCM)v (< 0)
Ys = Caf (>0) Ns = bCaf (>0)
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Stability derivatives

= The equilibrium equations writes

mV(B+r) = YzB+Yr+Ys
Jo .7 = NgfB+ N,r+ Nso
Yﬁ = —(Caf+0ar) (<0) Ng = —(bCaf—ch)
_ L 2 20 1
Vi = ~(bCas=cCar)y; N = —(tCas+ ¢ Car)y;
Ys = Caf (>0) Ns = bCaf (>U)

= Reorganizing the terms, one has

mVE = Y8+ (Y, —mV)r+ Yo
J..7 = NgB+ N.r+ Nsd

(<0)
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Canonical form of the equations

= It is also valuable to notice that the single track model lag to a
linear time invariant (LTI) model. It is usual to cast this model
under the standard form

z=Az + Bu

= The system state variables and the command vector are:

- (%) a=

= The system matrices A and B are easily identified and write

Yg Y, . 1 Ys
mV  mV mV
Ng N, Y5
Jzz J JZZ

25



!'_ Stability analysis
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Study of system stability

Use Laplace transform
B(t) — B(s) r(t) —=r(s) o(t) —d(s)

_)
B(t) = s 8(s) r(t) = s7(s)
The system becomes

(smV —Yg) B(s)+ (mV —=Y,) r(s) = Ys5(s)
—Ng B(s) + (s J.o — Ny) r(s) = Ns d(s)

The stability of the free response stems from the study of the
roots of the characteristic equation

A= (smV —=Yg) (s, —N,)+(mV —Y,) Ng =0

mVJ,, s* — (YgJ,. + mVN,) s+ (YsN, — Y.Ng + NgmV) =0
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Study of system stability

= Characteristic equation

mVJ,, s — (YgJ.. + mVN,) s+ (YsN, — Y, Ng + NgmV) =0

Y3 N,
mV + JZZ)S+(

Vg N. Y. Ny Ny

5% — ( )=20

= This equation is similar to the one of single dof oscillating mass

\ X
2
ms“+cs+k=0 N\ >
Nk
2 2 _ N M
\ C @) @)
N e e N R N e N e e N N N %

E=c/m QP =k/m
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Study of system stability

= Stability equation
SPHEs+02=0

= Roots of the characteristic equations

51,2 = —f/2:|:1/2\/£2 —4Q2

= Stability criterion: The real parts of all roots must be negative
= In case of conjugate roots, their sum must be negative

= In case of real roots, their sum must be negative and their product
must be positive

That is:

S1+ 82 =—-b/a <0 s1.80 =c/a >0

= This criterion is equivalent to Routh Hurwitz. -



i Study of system stability
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Study of system stability

= Characteristic equations (reminder)

mVJ,, s*° — (YsJ.., + mVN,) s+ (YgN, — Y.Ng + NgmV) =0

a b C

= [0 be checked
s1+s82=-b/a<0 < mVN.+J..Y3<0

si.so=cf/a>0 << mVNg+YsN,—Y,.Ng>0

= First condition: always satisfied
mV N, = —m/(b? Cor + ¢ Cpy) <0

J:2Yg = —J..(Cay + Cor) <0

31



Study of system stability

s Second condition:
si.s2=c/a>0 << mVNg+YsN, —Y,.Ng>0

= SO mVN@ = —mV(b Caf — CCO”«)

b2 (8 2 ar
N Y5 = (Coy + Coar) Car +cC

v
b of or
V
2
NTYB B Nﬁl/r _ CafcarL
V
= It comes the condition
CofCorL?

> 0

—mV(bCyf —cCy,
m( f—cC )—l- %
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Study of system stability

» The second condition is satisfied if

CafCaTLQ

> ()
%

—mV (b Cor —cCur) +

= For an understeer vehicle: Ng=—(bCoy —cCqsr) >0
the dynamic behaviour is always stable

= For an oversteer vehicle @~ Ng=—(bCay —cCyyr) <0
the dynamic behaviour is unstable above the critical speed

V2o CofCorL? B _C’Odt,cCOé,,,nL2
erit = m(bCqr —cCar) N mNpg




Reminder:
Neutral steer, understeer and oversteer vehicles

= Understeer gradient in Steady State Cornering

m cC m b CCar_bCaf

K: — p—
CoL CarL ' CafCar L

= If K=0, the vehicle is said to be neutralsteer:

K=0 ~ CCQT:bCaf NB:—(bCaf—CCQT)ZO
= If K>0, the vehicle is understeer

K>0 & ¢cCy > bCyuy Ng=—(0bCur—cCyr) >0

= If K<O, the vehicle is oversteer:

K<0 & ¢Co < bCy Ng=—(bCor —cCar) <0
34



Investigation of the motion nature

= Investigation of the discriminant of the stability equation
P+ET+ Q=0

p = &40
Ys N, Ys N, Y, N5 Ng
_ 4 _
(mV + Jzz) (mV J.. mV J., + Jzz)
mV. Je. mV J.. mV J..  J.

« If p>0: 2 real roots, damping is greater than the critical damping
and one experiences an aperiodic motion.

« If p<0: 2 complex conjugate roots, damping is below the critical
damping. One experiences an oscillation motion.

« If p=0, 2 identical roots, critical damping of the system.
35



Investigation of the motion nature

p:

= Value of the discriminant
Y5 N, 5 Ys N, Y, Ng Ng
— 4 (= _
P (mV + Jzz) (mV J.. mV J.., + Jzz)
Y5 N, 5 Y, Ng Ng
= — —4
(mV Jzz) + mV J.. J. .
. (Oaf+car_b2caf+czcar
B mV I,V

2
Nj Ng

2
4 —4
)"+ mV?2J,, Js s

= One finally finds

md.. V2 J..

(Caf+om 0P Cap + & Cm>2+4(bcaf—ccm)2 LN
m S22
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Investigation of the motion nature

= Discriminant (reminder)

b2 Caf + 2 Cyr

p:

m

(Caf + Oar .

b Coy —

cCur)?| 1 4

T
4
7 )+

= If N3<O (oversteer machine), p>0.
= The dynamic response is aperiodic
»« Stable as long as V < V.

= If Ng>0 (understeer machine), p<0.
= Positive term decreases as 1/V?2
= The response becomes oscillation (damped) over the speed

md.. V2

Ng
JZZ

1% J

Caf + Cozr .

b2 Caf + 2 Cor

oSsc. - Nﬁ

(

m

JZ z

b Oaf — CCar)z

)2+4(

md.,,
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!'_ Steady state circular motion
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Particular case: steady state turn

= The circular motion is characterized by:
S V2 N V4
/8 = r = 0 ay — E T = 9 — E

s It comes

Y58+ (mV-Y)r = Y50
= N;sé

—Ngﬁ— NTT

One extracts the value of the slip angle
B Nsd+ N, r
p=- N,

= The value of the yaw angle writes
(—mV Ng + NgY, — NTY,@) r = (NgY)B — N@Y(s) )

39



Particular case: steady state turn

= [t yields the gain between the yaw speed and the steering

angle:
ro NgYs — N5Yp
§ N,Ys — NgY, +mV Ng
= Given that: NgYs = Cap(cCar —bCay)
o ar 2 —NsY; - bca CO{T i Ca
NV, Ny, C f?/ L 5Y5 #( f)
NzYs — NsY5 = Cup Copr L
= It comes
5 L mV
— = _ 1+ N
T V _|_ P Oaf COdT L

40



Particular case: steady state turn

= Now taking into consideration the circular motion nature » = %

Lr mVr L m Ng V2
0= S == 4+

v T e O L

= And by introducing the value
Ng = —(b Caf — CCOW-)

= One recovers the classical expression for steady state turn

V2
)R
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!'_ Trajectory description
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Trajectory description

= The vehicle trajectory can be described using a parametric
equation relating the space coordinates and the time

t (X(8),Y (1))

One defines:
= 0 the course angle between
the trajectory and the
frames axis X
= vy the heading angle between
the X of the reference frame
and the x axes of the car
= f the side slide angle
of the vehicle, the angle between
the vehicle axis x and the

velocity vector tangent to the trajectory

A

X (projected)
X Heading angle v

Float angle B
Course anglg v Velocity vector
/ (projected)
Steering angle 6
Y (projected)
Vehiglé
traj/éctory

L » v
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Trajectory description

= We can write the following relations between the course angle
0, the heading angle y and the side slip angle f3:

V=145 J=r+p

= The linear velocities are obtained by using frame transformation
between the vehicle body axes and the inertial reference frame

dX dX ,
prl V cos v o = U cos Y — vsin Y
dYy ay

prale V sin v o = usin Y + v cos Y
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