MECA0527 ELECTRIC, HYBRID, and FUEL CELL VEHICLES

Pierre DUYSINX University of Liege Academic year 2021-2022

Course target

- Understanding, analyzing, and designing clean propulsion systems for vehicles
 - understanding the environment and energy challenges of transport systems
 - = understanding the problems and constraints of energy conversion systems in vehicle applications (impact upon vehicle architecture and performances)
 - understanding the different kinds of propulsion systems (thermal engines, electric motors, electrochemical converters, etc.)
 - understanding the different energy storage systems (fuels, batteries, supercaps, fly wheels, etc.)
 - understanding how to combine them to take the best of each of them in an integrated system

Course target

- Assess the performance of the propulsion system and of the electric vehicle
- Choose a motor with its fuel / energy
- Combine several solutions (hybrid propulsion systems)
- Devise an optimal energy / power management
- Analyze case studies

Agenda

	Date	Title	Room
01	16/09	Organization – Environmental Challenge – Selection of Powertrain (part 1/2)	B52 TP40
02	23/09	Selection of Powertrain (part 2/2)	
03	30/09	Powertrain architectures and transmission technologies	B52 TP40
04	07/10	Internal Combustion engines and e-motors. Modelling	B52 TP40
05	14/10	Performance : Equation of motion. Tractive forces and Road resistance, Performance criteria. Energy consumption	B52 TP40
06	21/10	EV : Performance, Design, Simulation HOMEWORK 1	B52 TP40
07	28/10	Energy storage systems for EV and HEV: batteries	B52 TP40
**	05/11	FALL BREAK	
08	11/11	ARMISTICE	

Agenda

	Date	Title	Room
08	11/11	Energy storage systems for EV and HEV: batteries	B52 TP40
09	18/11	Power storage systems: supercapacitors, flywheels, and hybrid energy storage	B52 TP40
10	25/11	Hybrid electric vehicles: architecture, components, energy managements strategies	B52 TP40
11	02/12	Introduction to fuel cells and fuel cell vehicles	B52 TP40
12	09/12	Design of series and parallel hybrids	B52 TP40
13	16/12	Industrial seminar: The TOYOTA HYBRID SYSTEM (Raf Schuermans, TME)	B52 TP40
		Or Environmental Assessment of EV and HEV	
**	17/12	WINTER BREAK	
**	23/12	HOMEWORK REPORT SUBMISSION	
**	January	EXAM	

- Introduction: context and challenge of automotive industry
- Selection of a propulsion system
 - Selection and comparison
 - Internal combustion engines
 - Electric vehicles
 - Hybrid powertrains
 - Fuel cell vehicles
- Internal Combustion Engines
 - Engine principles and architecture
 - Engine performances and characteristic curves
 - State-of-the-art and Future trends

- Electric motors
 - Electric motor type
 - DC / AC /SRM
 - Power electronics
 - Modelling
- Powertrain technologies
 - ICE powertrain: clutch, MT and AT, differential
 - EV powertrain:
 - Centralized and decentralized motorization
 - Gear boxes and diffrentials?
 - HEV powertrain architectures
 - Series, Parallel, Complex
 - Power split devices: torque and speed coupling

- Fundamental of vehicle propulsion and braking
 - Longitudinal equilibrium
 - Propulsion forces
 - Road resistances
 - Performance evaluation
 - Max speed, gradeability
 - Acceleration
 - Energy consumption and emissions
 - Driving cycles, estimation procedures, chassis dynamometer

- Design principles of EV
 - Performance evaluation
 - Component selection methodology: battery, electric motor, gear box
 - Energy consumption.
 - Simulation
- Energy and power storage systems
 - Batteries
 - Supercaps
 - Flywheels
 - Hybrid systems (composite systems)

- Hybrid vehicles architecture
 - Concept of hybrid powertrain
 - Main components
 - Energy Management strategies
 - Case studies
- Design principles of HEV
 - Series hybrid
 - Parallel hybrid
- Fuel Cell and Fuel Powered Vehicles
 - Principles
 - Modeling
 - Sizing

MECA0527 - Agenda

- Lectures & Exercises
 - Thursday 16/09 → 16/12: 08:45-12:15
 - Institute of Mechanics B52, room TP40
- Labs
 - Thermodynamic Labs (B49)

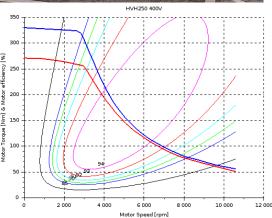
LECTURES

- Green code:
 - Course are given in presence.
 - No constraint
- Yellow code (now)
 - Half of seats are occupied. Min distance 1,0 m. (Preferably 1,5m). Masks are mandatory.
 - Classroom is divided into two groups because no other room is available.
 - Professor do swap after each week (cycles of two weeks)
 - Podcast are recorded during the lectures and posted on MyUliege platform
 - Students are allowed on the campus, but presence must be reduced

LECTURES

Orange code

- Max 20% of the students on the campus
- Course given remotely
- Podcast are recorded before or delivered using Blackboard Collaborate.
- Discussion sessions are organized either in <u>small groups</u> or via visio conference systems (LIFESIZE)


Red code

- Students are forbidden on the Campus
- All lectures are recorded and delivered via podcast are recorded during the lectures and posted on MyUliege platform
- Discussion sessions are organized are only allowed using visio conference systems (LIFESIZE)

Projects and Labs

- Project : Modeling and simulation of an EV
 - Work description (team of 2 students)
 - Data collection
 - Driving scenario
 - Vehicle modelling
 - Performance specification
 - Simulation of energy consumption
 - Effect of transmission selection
 - Single gear ratio, gear box, CVT
 - Comparison and discussion
 - Two homework
 - EV performance
 - Gear box selection and comparison
 - Literature review: read 2 articles

Projects and Labs

- Lab:
 - Chassis dynamometer
 - Group of 4 students
 - Evaluation: Report

Exam et evaluation

■ Projects → continuous evaluation

- Evaluation:
 - Reports:
 - Oral presentation: final discussion and feedback.
- Oral exam
 - Theory (Summary of 4 pages available)
 - Exercise
- Period → January

Lecture notes & Contact

- Copies of slides are available on web site:
 - www.ingveh.ulg.ac.be
 - Cours >> MECA0527
- MyUliege
 - Podcast (if available)
 - Communication

Contact

- Prof. Pierre DUYSINX
 - Email <u>p.duysinx@uliege.be</u>
 - Tel: 04 366.9194
 - Room: 0/514 (B52)

References

- M. Ehsani, Y. Gao, S. Gay, and A. Amadi. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. Fundamentals, Theory, and Design. CRC Press. 2005.
 - Available at library
- Les véhicules hybrides. Des composants au système. Sous la direction d François Badin. Editions Technip, Paris, 2013
- C.C. Chan and K.T. Chau. « Modern Electric Vehicle Technology » Oxford Science Technology. 2001.
- Advanced Electric Drive Vehicles. Ali Emadi. CRC Press, 2015.
- R. Kaller & J.-M. Allenbach. Traction électrique. Presses
 Polytechniques et Universitaires Romandes. Vol 1 et 2. 1995.