Vehicle Performance

Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2021-2022

Lesson 2 Performance criteria

Outline

DESCRIPTION OF VEHICLE MOTION

- Longitudinal motion
- POWER AND TRACTIVE FORCE AT WHEELS
 - Transmission efficiency
 - Gear ratio
 - Expression of power and forces at wheels
 - Power and forces diagram
- VEHICLE RESISTANCE
 - Aerodynamic
 - Rolling resistance
 - Grading resistance
 - General expression of vehicle resistance forces

Outline

STEADY STATE PERFORMANCES

- Maximum speed
- Gradeability and maximum slope
- ACCELARATION AND ELASTICITY
 - Effective mass
 - Acceleration time and distance

Outline

- FUEL CONSUMPTION AND EMISSIONS
 - Specific consumption of power plant
 - Vehicle fuel consumption measures
 - Constant speed consumption
 - Variable speed consumption and driving cycles
 - Chassis dynamometer

References

- T. Gillespie. « Fundamentals of vehicle Dynamics », 1992, Society of Automotive Engineers (SAE)
- R. Bosch. « Automotive Handbook ». 5th edition. 2002. Society of Automotive Engineers (SAE)
- J.Y. Wong. « Theory of Ground Vehicles ». John Wiley & sons.
 1993 (2nd edition) 2001 (3rd edition).
- W.H. Hucho. « Aerodynamics of Road Vehicles ». 4th edition.
 SAE International. 1998.
- M. Eshani, Y. Gao & A. Emadi. Modern Electric, Hybrid Electric and Fuel Cell Vehicles. Fundamentals, Theory and Design. 2nd Edition. CRC Press.

Max speed and gradeability

Vehicle performances

- Vehicle performance are dominated by two major factors:
 - The maximum power available to overcome the power dissipated by the road resistance forces
 - The capability to transmit the tractive force to the ground (limitation of tire-road friction)
- Performance indices are generally sorted into three categories:
 - Steady state criteria: max speed, gradebility
 - Acceleration and braking
 - Fuel consumption and emissions

- The steady state performances can be studied using the tractive forces / road resistance forces diagrams with respect to the vehicle speed
- Newton equation

$$F_T - F_{AERO} - F_{RR} - F_{SLOPE} = m \frac{dv}{dt}$$

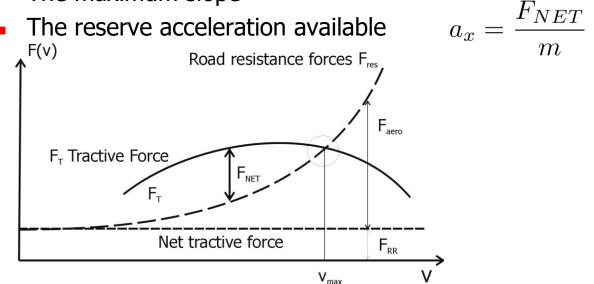
- Stationary condition $a_x = \frac{dv}{dt} = 0$
- Then equilibrium writes

$$F_T = F_{RES} = F_{AERO} + F_{RR} + F_{SLOPE}$$
$$\mathcal{P}_T = \mathcal{P}_{RES} = F_{RES} v$$

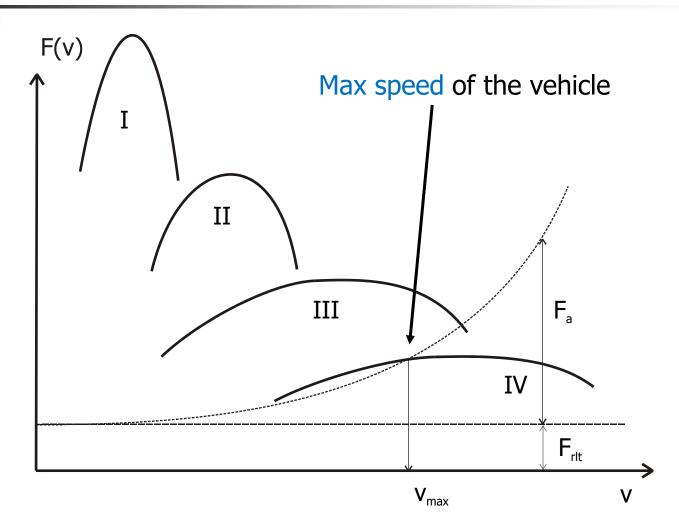
• One generally defines the **net force**

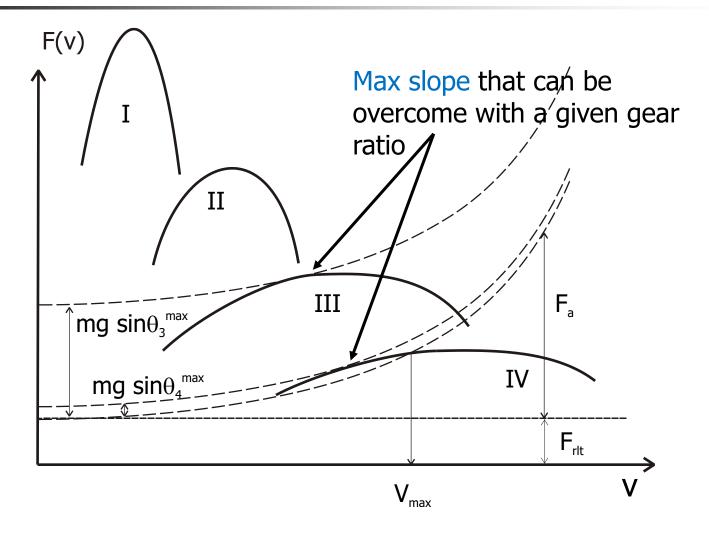
$$F_{NET} = F_T - F_{AERO} - F_{RR} - F_{SLOPE}$$

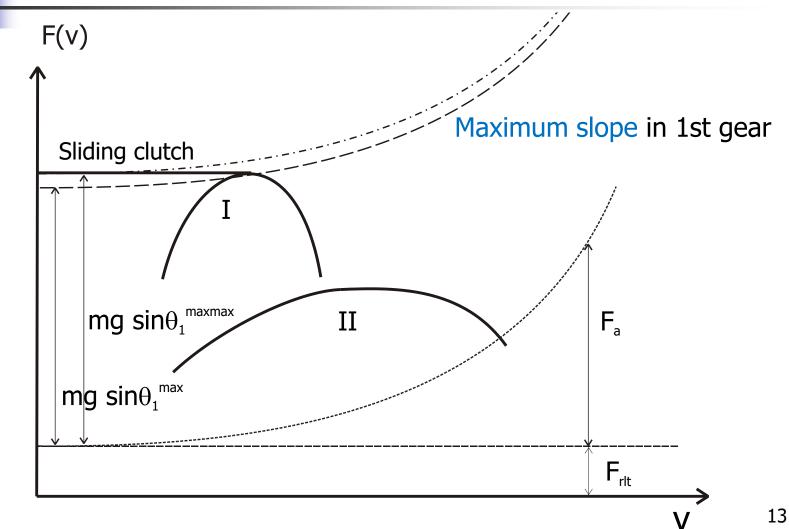
- One also can use the net force diagram to calculate
 - The maximum speed
 - The maximum slope



10







Maximum speed

- For a given vehicle, tires, and engine, calculate the transmission ratio that gives rise to the greatest maximum speed
- Solve equality of tractive power and dissipative power of road resistance

$$\mathcal{P}_t = \mathcal{P}_{RES}$$

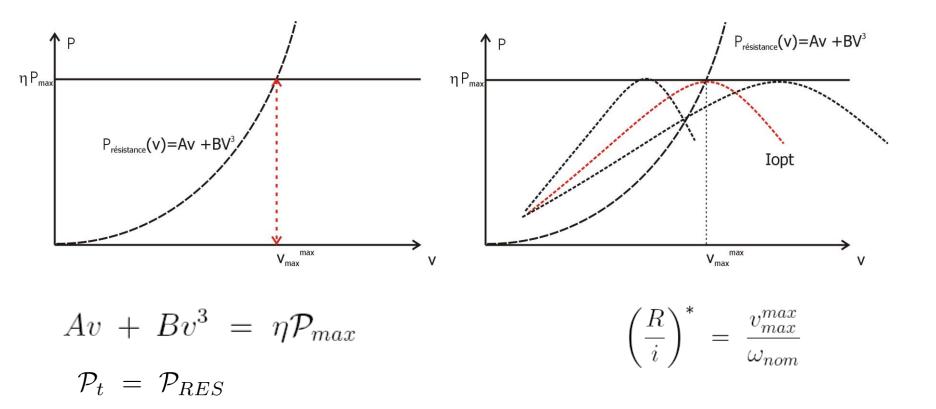
with

 $\mathcal{P}_{RES} = Av + Bv^3 \quad A, B > 0$

$$\mathcal{P}_t = \eta_t \mathcal{P}_p$$

 As the power of resistance forces is steadily increasing, the maximum speed is obtained when using the maximum power of the power plant

$$Av + Bv^3 = \eta_t \mathcal{P}_{max}$$



Maximum speed

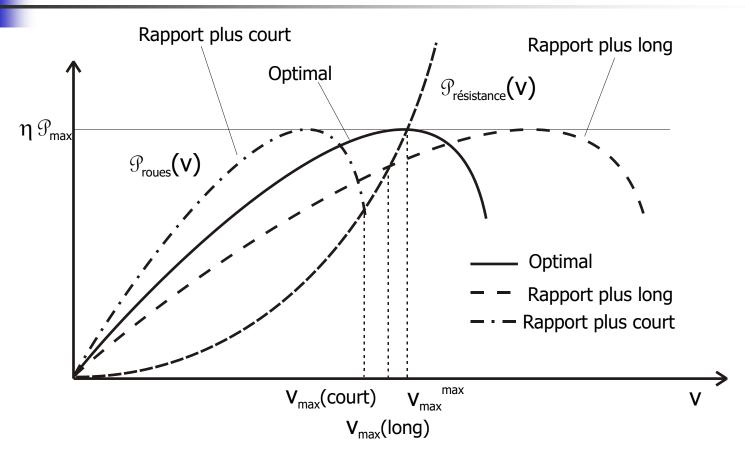
• Iterative scheme to solve the third order equation (fixed point algorithm of Picard) $x^{(k+1)} = f(x^{(k)})$

$$v^{(0)} = 0$$
$$v^{(n+1)} = \left(\frac{\eta \mathcal{P}_{max} - Av^{(n)}}{B}\right)^{1/3}$$

 Once the maximum speed is determined the optimal transmission ratio can be easily calculated by since it occurs for the nom rotation speed:

$$\left(\frac{R}{i}\right)^* = \frac{v_{max}^{max}}{\omega_{nom}} \qquad i^* = \frac{\omega_{nom} \cdot R_e}{v_{max}^{max}}$$

Max speed for given reduction ratio



Max speed is always reduced compared to v_{max}^{max}

Max speed for given reduction ratio

 Solve equation of equality of tractive and resistance power, but this time, the plant rotation speed is also unknown.

$$\begin{cases} \eta_t \,\mathcal{P}(\omega) = \mathcal{P}_{RES} = Av_{max} + Bv_{max}^3\\ \omega = v \,\frac{\overline{i}}{R_e} \end{cases}$$

 Let's eliminate the rotation speed of the engine to find a single nonlinear equation to solve

$$\mathcal{P}_{RES} = Av_{max} + Bv_{max}^3 = \eta_t \mathcal{P}(\frac{i}{R}v_{max})$$

Max speed for given reduction ratio

 Solve equation of equality of tractive and resistance power, but this time, the plant rotation speed is also varying.

$$\mathcal{P}_{RES} = Av_{max} + Bv_{max}^3 = \eta_t \mathcal{P}(\frac{\overline{i}}{R}v_{max})$$

Numerical solution using a fixed-point algorithm (Picard iteration scheme)

$$v^{(0)} = 0 \quad \text{ou} \quad v^{(0)} = v_{max}^{max}$$
$$\omega^{(k)} = v^{(k)} \frac{\bar{i}}{R_e}$$
$$\mathcal{P}^{(k)} = \eta_t \mathcal{P}(\omega^{(k)})$$
$$v^{(k+1)} = \left(\frac{\mathcal{P}^{(k)} - Av^{(k)}}{B}\right)^{1/3}$$

19

Selection of the top gear ratio

- Design specifications for the top gear ratio in connection with the topo speed criteria (from Wong)
 - To be able to reach a given top speed with the given engine
 - To be able to maintain a given constant speed (from 88 to 96 km/h) while overcoming a slope of at least 3% with the selected top gear ratio
- These specifications enable to select a proper top gear ratio
 - The first requirement enables to select a first gear ratio
 - The second condition enforces to select a gear ratio that gives rise to an engine rotation speed that is just above the nominal rotation speed (and the max power) in order to save a sufficient power reserve to keep a constant speed while climbing a small slope, overcoming wind gusts or accounting for loss of engine performance with ageing.

- For the maximum slope the vehicle can climb, two criteria must be checked:
- The maximum tractive force available at wheel to balance the grading force

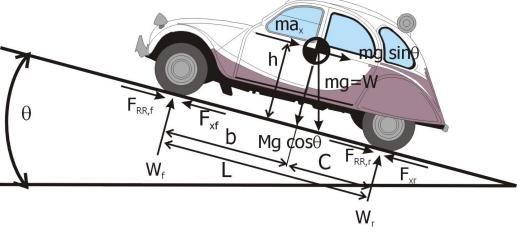
$$F_t \ge F_{RES} \simeq F_{GRADE} = mg\sin\theta$$

 The maximum force that can be transmitted to the road because of tire friction and weight transfer

$$F_{w,f} \le \mu W_f \qquad F_{w,r} \le \mu W_r$$

Surface	Peak Value μ
Asphalt and concrete (dry)	0.8-1.2
Asphalt (wet - 0.2 mm depth)	0.5 - 0.8
Gravel	0.4
Asphalt (wet - 2.0 mm depth)	0.05 - 0.5
Earth road (dry)	0.68
Earth road (wet)	0.55
Snow (hard-packed)	0.2
Ice	0.1

Table 1: Average values of friction coefficients for various road conditions



Vertical equilibrium

$$m g \cos \theta = W_f + W_r$$

- Rotational equilibrium about rear wheels contact point $W_f L + mg \sin \theta h + m a_x h = mg \cos \theta c$
- Rotational equilibrium about rear wheels contact point $W_r L = mg \cos \theta b + mg \sin \theta h + m a_x h$

Limitation due to the friction coefficient

$$F_{w,f} \le \mu W_f \qquad \qquad F_{w,r} \le \mu W_r$$

Normal forces under the front and rear wheel sets

$$W_f = mg \, \cos\theta \, \frac{c}{L} - mg \, \sin\theta \, \frac{h}{L} - m \, a_x \, \frac{h}{L}$$
$$W_r = mg \, \cos\theta \, \frac{b}{L} + mg \, \sin\theta \, \frac{h}{L} + m \, a_x \, \frac{h}{L}$$

At low speed and constant speed (a_x=0)

$$W_f = mg \, \cos\theta \, \frac{c}{L} - mg \, \sin\theta \, \frac{h}{L}$$
$$W_r = mg \, \cos\theta \, \frac{b}{L} + mg \, \sin\theta \, \frac{h}{L}$$

FOUR-WHEEL DRIVE with electronic power split

$$F_p = F_{w,f} + F_{w,r} \le \mu \left(W_f + W_r \right)$$
$$mg \, \sin \theta + mg \, \cos \theta \, f_{RR} \le \mu (mg \cos \theta \frac{c}{L} + mg \cos \theta \frac{b}{L})$$
$$\le \mu \, mg \, \cos \theta$$

Maximum slope

$$\tan\theta \le (\mu - f_{RR})$$

$$F_{w,f} \le \mu W_f$$

$$mg \sin \theta + mg \cos \theta f \le \mu mg(\cos \theta \frac{c}{L} - \sin \theta \frac{h}{L})$$

$$\tan\theta \leq \frac{\mu c/L - f}{1 + \mu h/L}$$

$$F_{w,r} \le \mu W_r$$
$$mg \, \sin\theta + mg \, \cos\theta \, f \le \mu \, mg (\cos\theta \frac{b}{L} + \sin\theta \frac{h}{L})$$

$$\tan\theta \leq \frac{\mu b/L - f}{1 - \mu h/L}$$

Selection of first gear ration

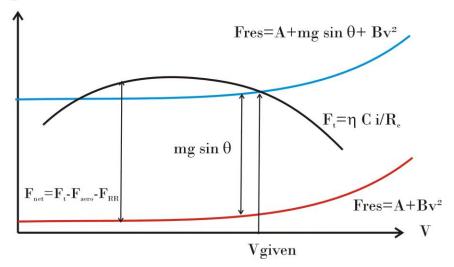
- Maximum slope to be overcome, for instance $\theta_{max} = 25\%$ $F_{RES} = mg \sin \theta_{max} + mg f_{RR} \cos \theta$
- Tractive force at wheels

$$F_w = \eta_t \frac{i}{R_e} C_p$$

Sizing of first gear ration

$$i_{max} = \frac{R_e \ F_{RES}}{\eta_t \ C_{max}} \qquad \qquad i_{max} = \frac{R_e \ mg \sin \theta_{max}}{\eta_t \ C_{max}}$$

Maximum slope at high speed



F

Check also nonslip condition

$$F_t \le \mu W_f \qquad F_t \le \mu W_r$$

 What is the maximum grade that can be overcome at a given speed V is:

$$\sin \theta = \frac{F_t - F_{RR} - F_{aero}}{mg} = \frac{F_t^{net}}{mg}$$

 Gradeability is ruled by the net tractive force available

$$F_t^{net} = F_t - F_{RR} - F_{aero}$$
$$= F_t - mgf\cos\theta - 0,5\ \rho\ SC_x\ V^2$$

• The tractive force is given by the speed

$$F_t(v) = \eta_t C(\omega = \frac{v}{R_e}i)\frac{i}{R_e}$$

Maximum slope at high speed

• The maximum slope can be evaluated as follows

$$F_t - F_{aero} - F_{RR} - mg\sin\theta = 0$$
$$\iff F_t - F_{aero} - mg\cos\theta f - mg\sin\theta = 0$$

If we define

$$d = (F_t - F_{aero})/mg$$

It comes :

$$d - \sin \theta = f \, \cos \theta$$
$$(d - \sin \theta)^2 = f^2 \, \cos^2 \theta$$
$$\iff d^2 - 2d \sin \theta + \sin^2 \theta = f^2 (1 - \sin^2 \theta)$$
$$\iff (1 + f^2) \, \sin^2 \theta - 2d \, \sin \theta + (d^2 - f^2) = 0$$

Maximum slope at high speed

• It a second order equation in $\sin\theta$ $(1+f^2) \sin^2\theta - 2d \sin\theta + (d^2 - f^2) = 0$

• Solving for $sin\theta$ gives

$$\sin \theta = \frac{2d \pm \sqrt{4d^2 - 4(1 + f^2)(d^2 - f^2)}}{2(1 + f^2)}$$
$$= \frac{d \pm \sqrt{d^2 - d^2 + f^2 - f^2 d^2 + f^4}}{1 + f^2}$$
$$= \frac{d \pm \sqrt{f^2 - d^2 f^2 + f^4}}{1 + f^2} = \frac{d \pm f \sqrt{1 - d^2 + f^2}}{1 + f^2}$$

It comes :

$$\sin \theta = \frac{d - f\sqrt{1 + f^2 - d^2}}{1 + f^2} \qquad d = (F_t - F_{aero})/mg$$

Selection of gear ratios

- Goal of the selected gear ratio: to adapt the characteristics of engine operation (rotation speed, torque) to the vehicle speed.
- The top and lowest gear ratios are selected to
 - Match a given top speed
 - To be able to drive over given grading conditions, that is to develop sufficiently high tractive forces at wheels
- The distribution of intermediate gear ratios in between the top and lowest gear ratio is made to span the full range of operating speeds more or less smoothl
- In principle, the different gear ratios should render as much as possible the maximum power curve

Accelerations and elasticity

Acceleration performance

 Estimation of acceleration and elasticity is based on the second Newton law

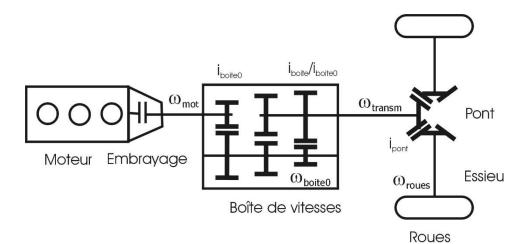
$$F_w - \sum F_{res} = F_{net} = m \frac{dV}{dt}$$

- Warning: when accelerating, the rotation speed of all driveline and transmission components is increasing: wheel sets, transmission shafts, gear boxes and differential, engine...
- → Effective mass to account for the kinetic energy of all components (translation + rotation)

Effective mass

• Total kinetic energy of the vehicle and its driveline :

$$\begin{split} T = & 1/2m \, v^2 + 1/2 (\sum I_{\rm W} + I_{\rm axle}) \, \omega_{\rm W}^2 \\ & + 1/2 (I_{\rm transm} + I_{\rm box2}) \, \omega_{\rm transm}^2 \\ & + 1/2 (I_{\rm box0}) \, \omega_{\rm box0}^2 \\ & + 1/2 (I_{\rm box1} + I_{\rm clutch} + I_{\rm crankshaft}) \, \omega_{\rm p}^2 \end{split}$$



Effective mass

 The rotation speed of the driveline components is linked to the longitudinal speed of the vehicle

$$\omega_{\rm W} = v/R_e \qquad \qquad \omega_{\rm W} = \omega_{\rm transm}/i_{\rm dif} \\ \omega_{\rm W} = \omega_{\rm box0}/(i_{\rm dif} * i_{\rm box}/i_{\rm box0}) \\ \omega_{\rm W} = \omega_{\rm p}/(i_{\rm dif} * i_{\rm box})$$

The kinetic energy writes

$$T = \frac{1}{2mv^{2} + \frac{1}{2}\left(\sum I_{W} + I_{axle}\right)v^{2}/R_{e}^{2}}{\frac{1}{2} + \frac{1}{2}(I_{transm} + I_{box2})v^{2}i_{dif}^{2}/R_{e}^{2}}{\frac{1}{2} + \frac{1}{2}(I_{box0})v^{2}(i_{dif}^{2}i_{box}^{2}/i_{box0}^{2})/R_{e}^{2}}{\frac{1}{2} + \frac{1}{2}(I_{box1} + I_{clutch} + I_{crankshaft})v^{2}i_{dif}^{2}i_{box}^{2}/R_{e}^{2}}$$

Effective mass

• One defines an effective mass $T = 1/2 m_{\rm e} v^2$

$$m_{\rm e} = m + \frac{\sum I_{\rm w} + I_{\rm axle}}{R_e^2} + \frac{(I_{\rm transm} + I_{\rm box2}) i_{\rm dif}^2}{R_e^2} + \frac{(I_{\rm box0}) i_{\rm dif}^2 i_{\rm box}^2}{i_{\rm box0}^2 R_e^2} + \frac{(I_{\rm box1} + I_{\rm clutch} + I_{\rm crankshaft}) i_{\rm dif}^2 i_{\rm box}^2}{R_e^2}$$

- The calculation of the effective mass requires the knowledge of the geometry and inertia properties of all the driveline components
- Empirical formula for preliminary design of cars by Wong $m_e = m_0 + m_1 i_{box}^2$ $i = i_{dif} * i_{box}$

Effective mass

 Empirical correction formula to estimate the effective mass of passenger car propelled by piston engines (Wong, 2001)

$$\gamma_m = \frac{m_{\rm e}}{m} = 1.04 + 0.0025 \, i^2$$

- This estimation formula puts forward the major factors of the corrections :
 - Nearly negligible for low reduction ratios (4th and 5th gear ratios)
 - Rather important for high gear ratios : 1st and 2nd gear ratios
- For railway systems, γ is of an order of magnitude 1,02 to 1,30 for classical train and from 1,30 to 3,50 for rack trains)

Effective mass

• Example: Peugeot 308 1.6 HDi with 5 gear ratios

	İ _{boite}	i	γ _m
1	3,95	13,63	1,5043
2	1,87	7,39	1,1764
3	1,16	4,58	1,0925
4	0,82	3,24	1,0662
5	0,66	2,61	1,0570

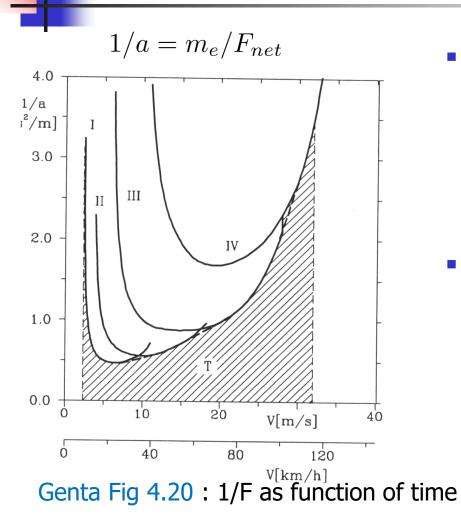
i_{dif}=3,95

We now proceed to time integration of Newton equation.

$$m_e \frac{dv}{dt} = F_w - \sum F_{res} = F_{net}(v)$$

Time to accelerate form V₁ to V₂.

$$dt = \frac{m_{e} dv}{F_{net}(v)}$$
$$\Delta t_{V_{1} \to V_{2}} = m_{e} \int_{V_{1}}^{V_{2}} \frac{dv}{F_{net}(v)}$$



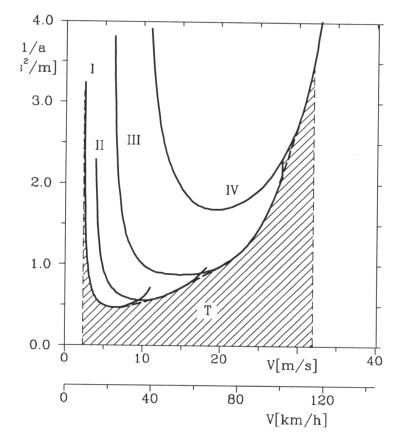
• Time to accelerate from V₁ to V₂:

$$\Delta t_{V_1 \to V_2} = m_{\rm e} \int_{V_1}^{V_2} \frac{dv}{F_{net}(v)}$$

Alternatively

$$F_{net}(v) = \mathcal{P}_{net}(v)/v$$

$$\Delta t_{V_1 \to V_2} = m_e \int_{V_1}^{V_2} \frac{v \, dv}{\mathcal{P}_{net}(v)}$$



Genta Fig 4.20 : 1/F as function of time

- Criteria for gear ratio up shift in order to minimize the acceleration time
- If two curves intersects each other: change the ratio at curve intersection
- If there is no intersection, then it is necessary to push the ratio up to maximum rotation speed
- Lower limit is given by an infinite number of gear ratios, that is a Continuous
 Variables Transmission (CVT)

 The solution of differential equation yields the time t as a function of the velocity

$$t = f(v)$$

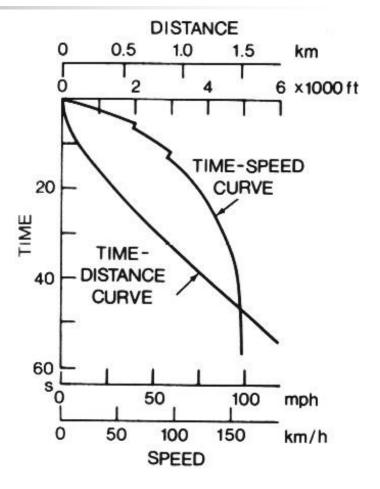
The reciprocal function

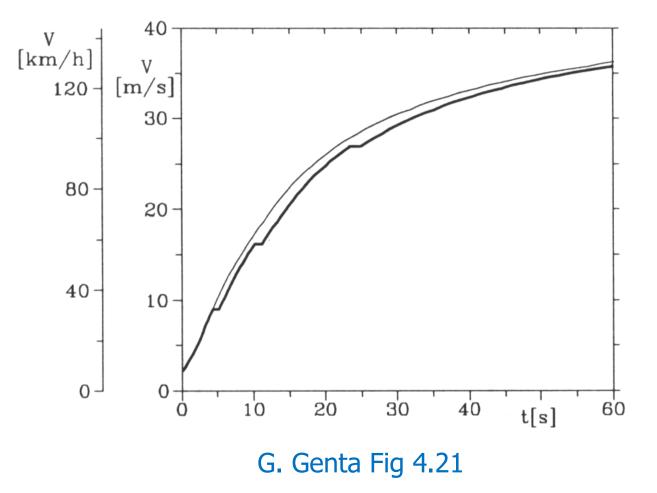
v = g(t)

requires to invert the relation

$$g = f^{-1}$$

 The changes of gear ratio must be taken into account





Distance as a function of the speed

- The distance from start can be evaluated by a second integration of the Newton equation
- Velocity and distance are linked by the kinematic relation

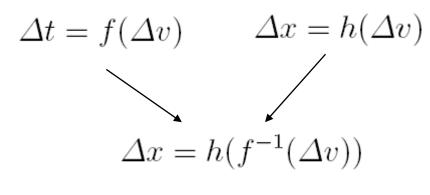
$$dx = v \, dt$$

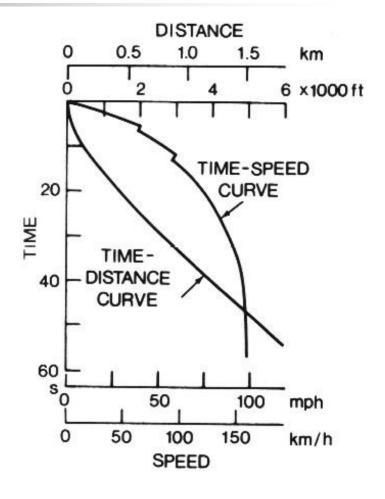
It comes

$$\Delta x_{V_1 \to V_2} = m_e \int_{V_1}^{V_2} \frac{v \, dv}{F_{net}(v)}$$

Distance as a function of the time

- One can eliminate the velocity V between the two curves t=f(V) and d=h(V)
- On gets the distance as a function of the time:





Change of gear ratio

- Criteria for changing the gear ratio.
- Gear ratio changing is a delicate operation that needs being studied in detail:
 - Changing the gear box ratio takes some time
 - Tractive force is interrupted
 - The vehicle is coasting and slows down
- For an expert driver
 - Small time to change the gear

 $\Delta t \approx 0,8s$

• Reduction of the velocity can be estimated by the first order approximation $E_{mén}(v)$

$$\Delta v \approx -\frac{F_{r\acute{e}s}(v)}{m_{\text{eff}}} \,\Delta t$$

Change of gear ratio

- When several gear change are necessary, the integration needs to be carried out by parts
- For instance

$$T_{V_1 \to V_2} = \int_{V_1}^{V_{I \to II}} \frac{m_e(i_1) \, dv}{F_{net}(v)} + \Delta t + \int_{V_{II}}^{V_{II \to III}} \frac{m_e(i_2) \, dv}{F_{net}(v)} + \Delta t + \int_{V_{III}}^{V_2} \frac{m_e(i_3) \, dv}{F_{net}(v)}$$

with

$$V_{II} = V_{I \rightarrow II} - \frac{F_{RES}(V_{I \rightarrow II})}{m_{e}} \Delta t$$

$$V_{III} = V_{II \rightarrow III} - \frac{F_{RES}(V_{II \rightarrow III})}{m_{e}} \Delta t$$