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Introduction

◼ Parallel hybrid drivetrains allow both engine and electric traction 
motor to supply their power to the driven wheels

◼ Advantages of parallel hybrid electric vehicles vs series hybrid
◼ Generator is not necessary (save one component)

◼ Electric traction motor is smaller

◼ Reduce the multiple energy conversions from the engine to the 
driven wheels ➔ Higher overall efficiency

◼ Counterparts
◼ Control of parallel hybrids is more complex because of the 

mechanical coupling between the ICE engine and the driven wheels

◼ No general design methodology: a design approach may be valid 
for only one particular configuration.

◼ Design results for one configuration may be applicable for only a 
particular given environment and mission requirements.
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Introduction

Configuration parallel torque coupling hybrid electric drive train
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Introduction

◼ Here: focus on the design methodology of parallel hybrid 
drivetrains with torque coupling which operate on the 
electrically peaking principle

◼ Engine supplies its power to meet the base load operating at a 
given constant speed on flat and mild grade roads or working at an 
average load in case of a stop-and-go drive pattern.

◼ Electrical traction supplies the power to meet the peaking 
fluctuating part of the load.

◼ This is an alternative option to mild hybrids
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Introduction

◼ In normal urban and highway driving, the base load is much 
lower than the peaking load

◼ Engine power rating is thus lower than electrical power rating 
➔ downsizing

◼ Because of the better torque / speed characteristics of electric 
traction motors (compared to the engine) a transmission with a 
single ratio is often sufficient for the electric drivetrain.
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Introduction

◼ Objective of this lesson: 

◼ Design of parallel hybrid electric drivetrains with torque coupling

◼ Design specifications:

1. Satisfy the performance requirements (gradeability, acceleration, 
max cruising speed, etc.)

2. Achieve high overall efficiency

3. Maintain the battery state-of-charge (SOC) at a reasonable level 
during operation without charging from outside the vehicle

4. Recover a maximum of braking energy
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Control strategies of parallel hybrid drive trains

◼ Available operation modes in parallel hybrid drive train;

◼ Engine alone traction

◼ Electric alone traction

◼ Hybrid traction (engine + electric motor)

◼ Regenerative braking

◼ Peak power source (batteries) charging mode

◼ During operation, the proper operation mode should be used to:

◼ Meet the traction torque requirements

◼ Achieve high level of efficiency 

◼ Maintain a reasonable level of SOC of PPS

◼ Recover as much as possible braking energy
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CONTROL STRATEGIES
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Control strategies of parallel hybrid drive trains

◼ Control level based on a two-level control scheme

◼ Level 2: vehicle level = high level controller

◼ Level 1: low level controller = subordinate controllers

◼ Engine, motor, brake, battery, etc.
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Control strategies of parallel hybrid drive 
trains

Overall control scheme of the parallel hybrid drive train
12
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Control strategies of parallel hybrid drive trains

◼ Vehicle system level controller

◼ Control commander

◼ Assign torque commands to lower-level controllers (local or 
component controllers)

◼ Command based on 

◼ Driver demand

◼ Component characteristics and feed back information from components 
(torque, speed)

◼ Preset control strategies

◼ Vehicle system controller has a central role in the operation of 
drive train
◼ Fulfill various operation modes with correct control commands to 

each components

◼ Achieve an overall high efficiency
13



Control strategies of parallel hybrid drive 
trains

◼ Component controllers
◼ Engine, motor, batteries, brakes, torque coupler, gear box, 

clutches, etc.

◼ Control the components to make them work properly

◼ Control operations of corresponding components to meet the 
requirements from the drivetrain and to reach prescribed values 
assigned by system controller
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Maximum PPS state-of-charge strategy

◼ When vehicle is operating in a stop-and-go driving pattern, 
batteries must deliver their power to the drivetrain frequently. 
PPS tends to be discharged quickly. 

◼ So, maintaining a high SOC is necessary to ensure vehicle 
performance

◼ Max state-of-charge is an adequate option.
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Maximum PPS state-of-charge strategy

Various operation modes based on power demand
16
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Maximum PPS state-of-charge strategy

Electric Motor alone propelling mode:

◼ If the vehicle speed is below a preset 
value Veb, a vehicle speed below which 
the engine cannot operate properly in 
steady state 

◼ Electric motor alone supplies the whole 
power to the driven wheels

◼ Engine is shut down or idling
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Maximum PPS state-of-charge strategy

Hybrid propelling mode:

◼ Example: case A

◼ Load demand is greater than the engine 
power

◼ Both engine and e-motor have to deliver 
their power to the wheels simultaneously

◼ Engine operates at its max efficiency line 
by controlling the throttle to produce Pe

◼ Remaining power is supplied by the 
electric motor Pe-m
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Maximum PPS state-of-charge strategy

Hybrid  propelling mode:

◼ Engine operates at its max efficiency line 
by controlling the throttle to produce Pe

◼ Remaining power is supplied by the 
electric motor
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Maximum PPS state-of-charge strategy

Batteries / PPS  charging mode:

◼ Situation of for instance point B

◼ When the power demand is less than the 
power produced by engine in its optimum 
operation line 

When batteries are below their max SOC

◼ Engine is operated in its optimum line

◼ E-motor works as a generator and 
converts the extra power of the engine 
into electro power stored in batteries
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Maximum PPS state-of-charge strategy

Batteries / PPS  charging mode:

with
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Maximum PPS state-of-charge strategy

Engine alone propelling mode:

◼ When load power demand (point B) is 
less than power engine can produce while 
operating on its optimum efficiency line

When PPS has reached its maximum SOC

◼ Engine alone supplies the power 
operating at part load 

◼ Electric motor is off
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Maximum PPS state-of-charge strategy

Regenerative alone braking mode:

◼ When braking demand power is less than 
the maximum regeneration capability of 
electric motor (point D)

◼ Electric motor is controlled to work as a 
generator to absorb the demand power
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Maximum PPS state-of-charge strategy

Hybrid braking mode:

◼ When braking demand power is greater 
than maximum regeneration capability of 
electric motor (point C)

◼ Electric motor is controlled to deliver its 
maximum braking regenerative power

◼ Mechanical brakes provide the remaining 
part
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Maximum PPS state-of-charge strategy

Flowchart of max SOC of PPS strategy
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On-off control strategy

◼ Similar strategy to the one used in series hybrid drive train

◼ Engine on-off strategy may be used in some operation 

conditions, typically:

◼ With low speed and moderate accelerations

◼ When engine can produce easily enough extra power to recharge 

quickly the batteries

◼ Engine on-off is controlled by the SOC of the PPS or batteries

◼ When SOC reaches its max level, engine is turned off and 

vehicle is propelled in electric mode only

◼ When SOC reaches again its low level, engine is turned on and 

propelled by the engine in PPS charging mode until max SOC is 

reached
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On-off control strategy

◼ When SOC reaches its max level, 

engine is turned off and vehicle is 

propelled in electric motor only 

mode

◼ When SOC reaches again its low 

level, engine is turned on and 

propelled by the engine in PPS 

charging mode until max SOC is 

reached
Illustration of thermostat control
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DESIGN OF A PARALLEL HYBRID 
VEHICLE
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Design of parallel hybrid components

◼ Key parameters

◼ Engine power

◼ Electric motor power

◼ Gear ratio of transmissions

◼ Batteries or peak power sources

◼ Great influence on the overall vehicle performance and 
operation efficiency

◼ Design methodology

◼ 1/ Preliminary choice based on performance requirements

◼ 2/ Accurate selection with detailed simulations
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Illustrative design example

◼ Design specification

◼ M=1500 kg

◼ f = 0,01 Re=0,279 m Cx= 0,3 S=2 m²

◼ Transmission ratio efficiency: ht,e=0,9 ht,em=0,95

◼ Performance specifications

◼ Acceleration time (0 to 100 km/h): 10 ± 1 s

◼ Maximum gradeability: 30% @ low speed and 5% @ 100 km/h

◼ Maximum speed 160 km/h
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Power rating of engine

◼ Engine should supply sufficient power to support the vehicle 
operation at normal constant speed on both flat or mild grade 
road without the help of PPS

◼ Engine should be able to produce an average power that is 
larger than the load power requested when operating in a stop-
and-go pattern
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Power rating of engine

◼ Operating on highway at constant speed on flat road or mild 
grade road

◼ Illustrative example

◼ V=160 km/h requires 42 kW

◼ With a gear box with 4 ratios

◼ Engine allows driving 

road at 5 % at 92 km/h in gear 4

road at 5 % at 110 km/h in gear 3
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Power rating of engine

◼ Engine is able to supply the average power requirement in stop-
and-go driving cycles

◼ The average power depends on the degree of regeneration 
braking (a coefficient). 

◼ Two extreme cases: full and zero regenerative braking:

◼ Full regenerative braking (a=1.0) recovers all the energy dissipated 
in braking and can be calculated as above

◼ No regenerative braking (a=0.0) , average power is larger so that 
when power is negative, third term is set to zero.
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Power rating of engine

Instantaneous and average power with full and 
regenerative braking in typical driving cycles 34
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Power rating of engine

◼ Average power of the engine must be greater than the average 
power load.

◼ Problem is more difficult than in series hybrid because the 
engine is coupled to the driven wheels

◼ Engine rotation speed varies with vehicle speed 

◼ Engine power varies with rotation speed and vehicle speed

◼ Estimation of the average power delivered by the engine in 
variable conditions: ➔ Calculate the average power that the 

engine can produce with full open throttle during a given driving 
cycle
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Power rating of engine

Average power of a 42 kW engine

42 kW Engine is OK
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Design of electric motor power capacity

◼ Electric motor function is to supply the peak power to the 
drivetrain

◼ Design criteria: provide acceleration performance and peak 
power demand in typical driving cycles

◼ Difficult to directly design the e-motor power for a prescribed 
acceleration performance

◼ Methodology

◼ Provide good estimates first in a preliminary approach

◼ Final design with detailed simulations

◼ Assumption to calculate some initial estimates

◼ Steady state road loads (rolling resistance, aero drag) are handled 
by engine while dynamic load (acceleration) is handled by electric 
motor
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Design of electric motor power capacity

◼ Acceleration related to the torque output of the electric motor 
working alone

◼ Power rating

◼ Illustrative example

◼ Passenger car Vmax=160 km/h, Vb=40 km/h (x=4), Vf=100 km/h

◼ ta (0 – 100km/h)=10 s, g=1,04
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Design of electric motor power capacity

◼ Illustrative example

◼ Passenger car Vmax=160 km/h, Vb=40 km/h, Vf=100 km/h

◼ ta (0 – 100km/h)=10 s, g=1,04

39
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Design of electric motor power capacity

◼ The approach overestimates the e-
motor power, because the engine has 
some remaining power to accelerate 
the vehicle also

◼ Average remaining power of the 
engine used to accelerate the vehicle

◼ This value depends on gear ratio, so 
that it varies with the engaged gear 
ratio and it increases with the gear 
ratio.

Engine remaining power: 17 kW
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Design of electric motor power capacity

◼ When the power ratings of engine and electric motor are initially 
designed, more accurate calculations must be carried out to 
assess the precise vehicle performance:

◼ Max speed

◼ Gradeability

◼ Acceleration

◼ Gradeability and max speed can be obtained from the diagram 
of tractive effort and resistance forces vs speed
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Design of electric motor power capacity

Illustrative example

◼ At 100 km/h, gradeabiltiy 
of 4,6% for engine alone 
and 18,14% for hybrid 
mode
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Design of electric motor power capacity

Illustrative example

◼ Acceleration performance 
for 0-100 km/h:

◼ ta=10,7 s

◼ d=167 m
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Transmission design

Transmission ratio for electric motor

◼ Because the electric motor supplies the peak power and 
because it has a high torque at low speed, a single ratio 
transmission between motor and the driven wheels is generally 
sufficient to produce high torque for hill climbing and 
acceleration

Transmission ratio for engine

◼ Multi gear transmission between engine and wheels can 
enhance the vehicle performance
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Transmission design

Multi gear transmission ratio between engine and wheels

◼ (+) Increase the remaining power of the engine and so the 
vehicle performance (acceleration and gradeability)

◼ (+) Energy storage can be charged with the large engine power

◼ (+) Improve the vehicle fuel economy because the engine can 
operate closer to its optimal speed

◼ (-) More complex system

◼ (-) Heavier and larger

◼ (-) Complicated automatic gear shifting control
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Design of batteries and PPS

◼ Batteries and PPS are sized according to the power and to the 
energy capacity criteria

POWER CAPACITY

◼ Battery power must be greater than the input electric power of 
the electric motor
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Design of batteries and PPS

ENERGY CAPACITY

◼ Related to the energy consumption in various driving patterns 
(mainly full load acceleration and typical driving cycles)

◼ Evaluate the energy required from the PPS and from the engine 
during acceleration period

◼ Illustrative example: 

◼ Energy from batteries 0,3 kWh

47[Ehsani et al. 2005]



Design of batteries and PPS

ENERGY CAPACITY

◼ Energy capacity must meet the energy requirements during 
driving pattern in drive cycles

◼ For a given control energy strategy charging and discharging 
power of energy storage can be obtained from simulation

◼ Generally, the energy consumption (and capacity sizing) is 
dominated by full load acceleration
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Design of batteries and PPS

Simulation results for FTP75 urban driving cycle

Max energy 
change: 0,11 kWh
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Design of batteries and PPS

◼ Not all energy stored can be used to deliver power to the drive 
train

◼ Batteries: low SOC will limit power output and reduce the efficiency 
because of the increasing internal resistance

◼ Ultracapacitors: low SOC results in low voltage and affects the 
performances

◼ Flywheels: low SOC is low flywheel velocity and low voltage at 
electric machine to exchange port

◼ Only part of the stored energy can be available for use

◼ Part available is given by a certain percentage of its SOC
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Design of batteries and PPS

◼ Energy capacity of the energy storage

◼ Illustrative example

◼ DE= 0,3 kWh

◼ SOCmax-SOCmin=0,3

◼ Ecap= 1 kWh
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Accurate simulation

◼ Once the major components have been designed, the drive train 
has to be simulated to obtain a detailed assessment of the 
vehicle

◼ Simulation on typical drivetrain brings useful information:

◼ Engine power

◼ Electric motor power

◼ Energy changes in energy storage

◼ Engine operating points

◼ Motor operating points

◼ Fuel consumption
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Accurate simulation
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Accurate simulation
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SIZING OF PARALLEL HYBRID 
VEHICLES

USING SIMULATION AND 
NUMERICAL OPTIMIZATION
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Application: bus optimization

◼ Modelling & Simulation: ADVISOR

◼ VanHool A300 Bus

◼ Typical 12 meters bus used by 
public operators in Belgium

◼ Reference propulsion system

◼ ICE Man diesel engine 205 kW 
(here Detroit Diesel engine from 
ADVISOR)

◼ Number of passengers: 33-110 
➔ here 66 passengers

◼ Driving Cycles

◼ SORT 2 Bus Drive Cycle by IUTP

◼ Commercial speed: 17 kph 
(urban driving situation)

Figure 5: SORT 2 drive cycle, for easy urban 
cycle
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Hybrid Electric Vehicles
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Hybrid Hydraulic Vehicle

New reversible hydraulic

motor /pump: Low drag, high 

efficiency, fluid=water

➔ Parker P2 or P3 series

Hydraulic accumulators (HP) / Reservoir 

(LP): high efficiency (95%)

En.: 0,63 Wh/kg Power ~ 90 kW/kg

➔ Hydac 58



ECOEFFICIENCY: AN OPTIMIZATION APPROACH

◼ A parametric study is made in 
BOSS QUATTRO to construct some 
response surface approximations of 
US and Ecoscore

◼ The ecoefficiency design optimization problem is solved using a multi 
objective genetic algorithm (MOGA) available in BOSS-QUATTRO based on 
response surface method

◼ Parametric models (scaling factors) in
ADVISOR

◼ Simulation of performances and fuel 
consumption & emissions against 
driving cycles
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Optimization: Problem Statement

◼ Mathematical multi objective design problem statement:

Minimize: 

With respect to

Subject to:
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Many thanks for your kind attention
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All the best in your future professional life
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