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CONTEXT

◼ CONTEXT

– Enhancing products performance and their fitness to customers’ 
expectations

– Shortening time-to-market release of new products

– Saving mass and energy…
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CONTEXT

◼ Engineering design becomes a more and more complex task.

◼ OPTIMISATION

– Relieving designers from the tedious work of re-analysis tasks 
management

– Accelerating design process

– Taking into account a large number of design parameters and 
design constraints

– Finding solutions to non intuitive problems with conflicting 
constraints

– Generating new and innovative solutions
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CONTEXT

◼ SS Great Britain (1843)

– First ship to be built with an 
iron hull 

– Parts designed and fixed 
together according to the 
available technology at the 
time (wood technology)

– If you don’t know it is metal 
you would think it is wood!
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CONTEXT

◼ Boeing 787

– Composite structure BUT…

– True potential is not fully 
explored

– Composite structures are almost 
direct replicas of metallic 
structures

– Some of the issues

- Repair

- Failure modes

- Systems interaction

– Weight saving =< 5% in current 
use
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CONTEXT

◼ Design problem

– Design variables 

◼ (more than 1.000):

◼ Composite panels and stringers lay-
ups (thicknesses, ply proportions)

◼ Stringer dimensions

– Minimize weight

– Constraints (more than 100.000)

◼ Reserve factors

◼ Buckling, reparability, …

◼ Solution of large-
scale problem 
using CONLIN

With courtesy by Samtech and Airbus Industries

◼ Illustration of limitation of 
present solvers
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CONTEXT

◼ Additive manufacturing enables 
the fabrication of parts with 
complex geometries

◼ Fully taking advantage of 
additive manufacturing (AM) 
requires to redesign the 
components

◼ There is less manufacturing 
constraints but there are still 
some other ones, different 
ones!
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CONTEXT

◼ Topology optimization allows to 
discover innovative concepts 
fully exploiting the liberty 
offered by additive 
manufacturing.
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A BRIEF HISTORICAL PERSPECTIVE
OF STRUCTURAL OPTIMIZATION
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Calculus of variations: 18ies century → …

◼ From the 18ies century famous mathematicians have developed the Calculus of 
Variations. 

◼ The work is essentially based on developing analytical solutions for various 
problems → analytical solution to structural optimization problems.

◼ The design variables are functions that define the structural properties. The 
objective functions and the design restrictions are function of the design variable 
functions.

◼ The calculus of variations also provides the necessary optimality conditions as 
(partial) differential equations, i.e. the Euler Lagrange Equations. 

◼ Example: Optimization of the cross section of a bar subject a continuous traction
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Calculus of variations: 18ies century → …

◼ Example: Optimization of the cross section of a beam subject a bending
moment at its free end

– Analytical solution 
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Optimization with discrete systems: 1960ies
→…

◼ Later on during the 20ies century, the mathematical programming or numerical 
optimization was developed in parallel to the soar of numerical solutions in 
mechanics using finite element method (FEM) or boundary element methods 
(BEM). 

◼ Application of numerical optimization to structural design can be traced back to 
the pioneer work by Schmidt (1960). 

– L. Schmit. Structural design by systematic synthesis. In 2nd ASCE Conf 

Electronic Computing (Pittsburgh, PA), pages 139–149, 1960

◼ With computational mechanics and the FEM or BEM methods, the unknowns of 
the physical problem (mechanical, electrical, thermal...) are discrete values of 
the displacement and stress fields (e.g. nodal values). 

◼ In a similar way, the optimization problem is stated in terms of a finite number 
of design parameters resulting from a natural or discretization process of the 
design functions. 
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Optimization with discrete systems: 1960ies
→…

◼ Numerical optimization or mathematical programming is the branch of 
mathematics dealing with optimization problems with a finite number of 
variables. 

◼ The variables are generally collected in a finite dimension vector in Rn. 

◼ The objective functions and the design restrictions are implicit or explicit 
functions which depend on the discrete state variables q and of the discrete 
design variables x.

◼ Mathematical programming provides the necessary optimality conditions of the 
minimization / maximization problem as algebraic equations. 
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Optimization with discrete systems: 1960ies
→…

◼ Typical simple examples of structural optimization are mass minimization of 
truss structures. The state and design variables are naturally discrete, 
respectively the nodal displacements and the bar cross sections. One can also 
discretize continuous system into a finite dimension vector of variables.
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Discretization of the beam long its spanTruss: naturally discrete value problem



Optimization with discrete systems: 1960ies
→…

◼ Later, many problems which are discretized because of numerical solution have 
also been investigated. The state and design variables are element properties or 
groups of element properties.
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Discretization of the mass 
minimization problem of a wing

Discretization of the density 
distribution in topology optimization



Example: three-bar-truss problem

◼ Typical example of finite dimension optimization problem
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Example: three-bar-truss problem

◼ It is possible to express explicitly the functions and the problem writes
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ENGINEERING DESIGN: AN OPTIMIZATION 
PROBLEM
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OPTIMIZATION LOOP IN ENGINEERING

◼ Design process is intrinsically an iterative process

Define an initial design
Determine failure modes
Select design variables
Devise an appropriate analysis scheme

Design criteria are satisfied?

Closed form solution
Experimental 
Numerical e.g. finite elements

Change the design variables
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OPTIMIZATION LOOP IN ENGINEERING

◼ Design is a complex process mixing various skills and resulting from a 
compromise between various factors. Some of them are perfectly 
rationale and can be expressed in numerical criteria.  Some other 
considerations are fuzzier typically inspired by experience, sometimes 
intuition, subject to some aesthetic or ethic considerations. 

◼ With the soar of computers in engineering, a growing part of the 
design task is carried out by mathematical modeling and computer 
simulation. 

◼ A lot of efforts have been devoted to identify in the design process the 
tasks which can be precisely described by mathematical modelling in 
order to take advantage of the growing capability of computers to 
predict more and more accurately the complex behavior of large 
problems even before having built physical prototypes. 

– ➔ all digital design concept
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OPTIMIZATION LOOP IN ENGINEERING

◼ TOWARDS A “COMPUTER AIDED DESIGN” = ALL DIGITAL 
ENGINEERING

– Numerical CAD model: CATIA, SolidWorks, NX, Pro Engineer…

◼ Parametric models + model updating

– Analysis

◼ Generally Finite Element model (80% = Linear Static Analysis)

◼ Responses: Stresses, displacements, weight, eigenfrequency, 
buckling loads, etc.

– Redesign: automatic and rational redesign tools

◼ Optimality criteria

◼ Mathematical programming algorithms

◼ Heuristic algorithms (e.g. Genetic Algorithms)
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OPTIMIZATION LOOP IN ENGINEERING

◼ For a long time, the focus was given to improve the analysis step using 
computer simulation. However design process can not be reduced to 
the sole analysis step. 

◼ The design process is even more concerned with modifying the 
concepts and details of the solutions. 

◼ At least for its rational part, the redesign process can be cast as a 
mathematical problem belonging to the field of optimization. 

◼ Typically engineers can translate their design problem into the 
structured formalism of an optimization problem which can later be 
solved efficiently using the rationale tools of numerical optimization. 
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ENGINEERING PROBLEM FORMULATION

◼ Design of a car body

– Maximize stiffness against several load cases

– Maximize natural frequencies of car body

– Constrain stress criteria of various kinds including failure

– Satisfy manufacturing and assembly constraints

– Minimum weight and cost…

Courtesy of Samtech and PSA
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ENGINEERING PROBLEM FORMULATION

Design of an engine connecting rod at 6000 rpm

– Maximize dynamic response 

– Restriction on stress constraints and fatigue life

– Constraint on maximum deformation, buckling load…

– Calculate bold prestressing, lubrication, balancing… 24



ENGINEERING PROBLEM FORMULATION

◼ Vehicle dynamics

– Verify suspension kinematics

– Evaluate various vehicle stability tests

– Verify the rolling behavior

– Maximize both ride and comfort

– Include active suspension and active safety systems…
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ENGINEERING PROBLEM FORMULATION

◼ When being educated in the structural optimization, engineers can 
easily 'think' their design problem as minimizing / maximizing a 
selected objective function subject to some design constraints. 

◼ The design variables are the parameters of the system that the design 
is ready to modify to improve his/her design.

◼ Engineers have to be able to identify adequately the quantity of 
interest that must be minimized/maximized while translating the design 
specifications into numerical criteria which are the design restrictions of 
the problem.
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ENGINEERING PROBLEM FORMULATION

◼ The engineering design problem can be cast into a mathematical 

programming problem to be solved in an efficient and rational way

– Enable solutions based on mathematical optimization methods

– Mathematical background ➔ convergence guaranties

– Standard and general approach

– Open systems approach

– Structural and multidisciplinary problems
27



ASSUMPTIONS AND DEFINITIONS
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DEFINITIONS: Design variables

◼ Design variables: any idealized engineering system can be described 
by a finite set of quantities:

– Material parameters (Young modulus…)

– Dimensions (thickness, area, etc.)

– Shape parameters (control points, dimensions, angles)

– Layout of components (presence/absence of members, local 
density variables…).

◼ Some quantities are fixed: the prescribed parameters

◼ Some quantities can be modified to improve the design: the design 
variables
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Hierarchy of design variables

◼ In the 1990ies with the soar of topology 
optimization, [Jog, Haber and Bendsoe, 1996]
sort the design variables hierarchy into 3 
families:

a/ Sizing

– Cross section, thickness, Young modulus...

b/ Shape 

– Lengths, angles, control point positions…

c/ Topology

– Presence or absence of holes, 

– Connectivity of members and joints...
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ASSUMPTIONS AND DEFINITIONS

◼ Design variables are denoted by x

◼ We are going to work with finite dimension problems

– Naturally discrete structures (e.g. truss)

– Discretized structures (FEM, Finite volume, BEM…)

◼ The numerical solution of this kind of optimization problems resorts to 
mathematical programming methods

◼ The design variables are collected in design variable vector x of 
dimension n:
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DEFINITIONS: Design variables

◼ Most often the design variables are assumed to vary continuously
between a lower and an upper limit: these are the side constraints.

– Side constraints are generally related to technological, 
manufacturing and physical bounds

◼ In some cases the design variables can only take on discrete values
from a given set: these are discrete variables

– The discrete design variables can be selected from a catalog or are 
naturally discrete (e.g. number of stiffeners)

◼ Real problems usually involve mixed continuous-discrete variables
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Types of analysis and optimization

◼ TYPES OF OPTIMISATION

– Structural

– Multidisciplinary

◼ Structural,

◼ Aerodynamics,

◼ Thermal,

◼ Electromagnetic,

◼ Manufacturing…
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DESIGN PROBLEM FORMULATION

OBJECTIVE FUNCTION

◼ Define a function that is a quantity of interest, a criterion able to 
quantify and to compare the performance of the design. It is a function 
of the design variables x and also of the state variables q
(displacements…)

– Examples of objective functions

◼ Weight of a wing

◼ Compliance of a machine tool

◼ Operating cost of a heat exchanger

◼ Time to move to a position within a given tolerance for a robot

◼ Represented by its contours of constant values in the design space
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DESIGN PROBLEM FORMULATION

◼ Standard formulation of optimization problem is minimization problem 
of single objective function

◼ But one may also have to solve other kinds of problems that can be 
cast into an equivalent minimization problem with a single objective 
function. 

◼ Maximize f(x) is equivalent to minimize –f(x) or 1/f(x)
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DESIGN PROBLEM FORMULATION

◼ Several design problems involve the minimization of the max value of a 
set of function. 

– For instance one may want to minimize the maximum of the 
equivalent stress in several points of the domain.

◼ Max function is non smooth, and it can be replaced by continuous 
approximations. Several famous techniques exist

◼ Introduce an addition variable

36



DESIGN PROBLEM FORMULATION

◼ One can also use smooth approximation of max operator. The most 
famous ones are 

– Are tailored to aggregate sets of data whose values are in [0,1]!

– Parameter p has to be chosen as high as possible but not too high 
for sake of computational degeneracy. In practice p: 4 → 30?

– Have special properties and behaviors see Ref. Mesiar et al (2015) for 
a nice review 37

P mean

KS-L

P norm

Average Disjunctive
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DESIGN PROBLEM FORMULATION

◼ If using p-norm, maximum is replaced by the following problem
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DESIGN PROBLEM FORMULATION

CONSTRAINTS or DESIGN RESTRICTIONS

◼ Establish and quantify the requirements and the specifications to be 
satisfied by the final design

– For example: 

◼ Structural responses

– Upper / lower limits on stresses

– Maximum displacements

– Lower limit on eigen frequencies

– Lower limit on buckling loads

◼ Geometric quantities

– Weight, volume, CG position…

◼ Manufacturing

– Minimum thickness or variables linking

– Molding / unmolding…
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DESIGN PROBLEM FORMULATION

CONSTRAINTS or DESIGN RESTRICTIONS

◼ In engineering design, the design restrictions are generally inequality 
constraints

– Maximum displacement, stresses

– Volume resources…

◼ Sometimes equality constraints

– E.g. tangency or symmetry conditions

◼ Represented in the design space, by the surface of their trace
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THE DESIGN SPACE

◼ We have a set of n design variables xi

(i=1…n). One can imagine a n 
dimensional space, each axis 
corresponding to one design variables. 
This is the design space

◼ The design space is very useful to grasp 
what is the nature of the optimization 
problem

◼ The objective function is represented by 
its contours of constant value (level sets)

◼ The constraints are represented by the 
restraint surface on which the constraint 
function is equal to its bound
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THE DESIGN SPACE

◼ Feasible point: 

– A design point is feasible if all 
constraints are satisfied meaning that 
the design specifications and 
restrictions are fully satisfied

– An unfeasible point is characterized 
by one or several constraints that are 
not satisfied.

◼ A constraint that is not satisfied is said to 
be violated

◼ When a constraint is satisfied as an 
equality, the constraint is said to be 
active or tight.
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The design space: example

◼ Non-linear constraint

◼ Linear constraint

◼ Objective function (quadratic)

◼ Optimization problem
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THE OPTIMIZATION DESIGN LOOP
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OPTIMIZATION LOOP IN ENGINEERING

◼ The target: the fully computerized design cycle

Define an initial design
Determine failure modes
Select design variables
Devise an appropriate analysis scheme

Design criteria are satisfied?

Closed form solution
Experimental 
Numerical e.g. finite elements

Change the design variables
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Simple example: 2 bar truss

◼ Max allowable stresses

– Compressive s = 25 daN/mm²

– Tensile s = 50 daN/mm²

◼ Initial design

– Cross sectional areas 10 mm²

◼ Analysis

◼ Stresses
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Simple example: 2 bar truss

◼ Redesign

◼ Reanalysis

Exactly the tensile and
Compressive stresses 
Limits 

Optimum design in the sense of minimum
Weight design 47



OPTIMIZATION LOOP IN ENGINEERING

◼ For the two-bar truss: very simple situation: after one redesign, one 
finds the true optimum solution

◼ Generally: much more complicated situation!

– Several iteration steps are necessary to come to a stationary 
solution, which is an approximate solution within a certain 
tolerance

– No analytical solution: the analysis generally requires an expensive 
computer analysis (FE analysis)

– The constraints are implicit and very non-linear functions of the 
design variables

– The function evaluation is expensive and requires a run of a full FE 
(or numerical) model
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Example: three-bar-truss problem

◼ Let’s investigate a more complex problem to understand the problem!
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Example: three-bar-truss problem

◼ It is possible to express explicitly the functions and the problem writes

Only one single stress constraint is 
active at the optimum (s1)

Question: how to find a trajectory 
leading to the optimum?

Requires a periodic evaluation of the 
constraints
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OPTIMIZATION LOOP IN ENGINEERING

◼ Shape optimization problem of a hole in plate under bi-axial stress field
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ITERATIVE OPTIMIZATION PROCESS

◼ The functions are generally implicit, 
non-linear and non-convex.

◼ To solve a non-linear optimization 
problem, one has to resort to an 
iterative process.

◼ At each stage k with a design x(k), the 
optimization procedure aims at 
determining a better design x(k+1).

◼ From an ideal point of view, one would 
like to have a sequence of steadily 
feasible and continuously improved 
designs.

◼ At each step the objective function and 
the constraints must be evaluated.

◼ Moreover, many optimization algorithms 
require the computation of the 
derivatives: it is the sensitivity 
analysis
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OPTIMUM DESIGN CHARACTERIZATION

◼ At the optimum design point x*, it is impossible to make further 
progress without

– Either violating at least one constraints

– Or increasing the value of the objective function

◼ The following two situations are possible (constrained minimum)

Tangency Vertex 53



OPTIMUM DESIGN CHARACTERIZATION

◼ Numerical optimization problem: how to go from x(0) to x*?

54



ITERATIVE OPTIMIZATION PROCEDURE

◼ Optimization procedure requires an alternating evaluation

– Structural analysis (costly) + Sensitivity analysis

– Weight minimization ➔ new design point prediction

Mathematical programming

– Rigorous

– General

– Stable, monotonic 
convergence

– Local optimum?

– Large number of re-
analyses growing with the 
number of d.v.

Optimality criteria

– Intuitive

– Specific

– Uncertain convergence

– Lead not necessarily to an 
optimum point

– Small number of reanalyses 
independent of the number 
of d.v.

UNIFIED APPROACH : SEQUENTIAL CONVEX PROGRAMMING
+ STRUCTURAL APPROXIMATIONS
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SEQUENTIAL CONVEX 
PROGRAMMING APPROACH

Direct solution of the original optimisation 

problem which is generally non-linear,

implicit in the design variables

is replaced by a sequence of optimisation 

(convex explicit) sub-problems

by using approximations of the responses F, Gj and using powerful

mathematical programming algorithms
56



SEQUENTIAL CONVEX PROGRAMMING APPROACH

◼ Two basic concepts:

– Structural approximations: replace the implicit problem by an explicit 

optimisation sub-problem using convex, separable, conservative 

approximations; e.g. CONLIN, MMA

– Solution of the convex sub-problems: efficient solution using dual methods 

algorithms or SQP method.

◼ Advantages of SCP:

– Optimised design reached in a reduced number of iterations: 10 to 20 F.E. 

analyses

– Efficiency, robustness, generality, and flexibility, small computation time

– Large scale problems in terms of number of design constraints and 

variables
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SENSITIVITY ANALYSIS

◼ FINITE DIFFERENCES:

– Redo a full FE analysis for each (perturbated) variable

– General approach: available for any analysis programme, linear or non 

linear problems

– Short development time

– Can be expensive from a computation time point of view

◼ ANALYTIC AND SEMI-ANALYTIC APPROACHES:

– Based on the derivation of the state equations

– Derivatives are evaluated as additional results of the analysis programmes

– More efficient and less expensive (computation time)

– Only available for a restricted set of analysis programmes
58



SENSITIVITY ANALYSIS OF 
THE GENERALISED DISPLACEMENTS

◼ Discretised equilibrium (Finite Elements)

with K the stiffness matrix, q the generalised displacements, 

and g the load vector

◼ The sensitivity of the displacements with respect to variable x:

◼ The semi-analytic method: calculate the derivatives of the stiffness 

matrix and of the load vector by finite differences:
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NUMERICAL APPLICATIONS:
SIZING, SHAPE, AND TOPOLOGY 

OPTIMIZATION

60



SIZING OPTIMIZATION

A typical sizing optimization problem

◼ Design variables are some cross sections or plate thickness parameters

– The design variables do not change the FE model

◼ Minimum weight design (or equivalently the volume)

◼ The behavior constraints: limitations on the static / dynamic / stability 
responses

– Displacement

– Stress

– Frequency

– Buckling load

◼ Side Constraints
61



Strength optimization of a composite plate

PX

Y

Fibers direction

Compliance
t,

min


kgweight 5.1

15.0)1
..

1
min( −

HT

X

Y

P

Optimized solution
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Strength optimization of a composite plate

1.78mm/0° 1.52mm/0° 1.07mm/0° 0.67mm/0° 2.88mm/99°

X

Y

0.59mm/133° 0.84mm/138° 0.55mm/50° 0.54mm/42°

0.64mm/130° 0.51mm/50° 0.66mm/57° 1.04mm/137° 0.66mm/128°

1.69mm/0° 1.42mm/0° 1.14mm/161° 0.60mm/145° 0.01mm/93°

1.35mm/116°

P

8.00 4.93 3.42 4.16 1.55

X

Y

1.09 0.94 1.43 0.38

1.73 0.86 0.38 3.48 6.80

6.04 4.5 2.66 5.40 0.80

3.59

P

Optimized 

solution

Tsai-Hill 

safety margins
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Strength optimization of a composite plate

0 10 20
0

2

4

Relative compliance

0 10 20
0.7

0.8

0.9

1

Relative mass

0 10 20
-1

-0.5

0

0.5

Min Tsai-Hill safety margin
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◼ Modification of external or inner 
boundaries

◼ Key issue: definition of a 
consistent parametric CAD model

– Geometrical constraints 
(tangency, linking of points)

– Geometrical features: straight 
lines, circles, NURBS, surfaces, 
etc.

◼ Implementation issue: API to and 
from CAD systems (CATIA, Pro E, 
etc.)

SHAPE OPTIMIZATION

Zhang, Duysinx, Fleury (1993)

Design variables = a set of 

independent CAD model 

parameters
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Example : Shape Optimisation of a Torque Arm

Statement of the design problem:

Minimise Weight

8 design parameters

s.t. Von Mises equivalent stress under 80000 N/mm²

Geometry constraints (thickness of members  > 1 cm)
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Example : Shape Optimisation of a Torque Arm
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Generalized Shape Optimization With XFEM 
[Van Miegroet et al., 2007]

◼ Connecting rod problem : 

– 2 Level Set 3D surface defined by NURBS curves

– Parameters : Control points of the NURBS

◼ Variables (12) : Mvt. of Ki along y axis

– Objective function : min Volume 

– S.t. Constraints : Von Mises<70 Mpa

◼ 65000 Elements ~ 30000 constraints

– Volume reduction ~ 50% 

Addition of  a superellipse at center 

(same mesh) : gain of  3% volume ➔ 68



Why topology optimization?

◼ CAD approach does not allow topology modifications

A better morphology by 
topology optimization

Zhang et al. 1993

(Duysinx, 1996)



Topology optimization

◼ Optimal material distribution formulation (Bendsøe & Kikuchi, 
1988)

– Optimal topology without any a priori

– Fixed mesh

– Design variables = Local density parameters

– Homogenization law for continuous interpolation of effective 

properties (e.g. SIMP / power law)

 

 Ei = E0 

 i = 0 

Ei = 0 

i = 0 

 i = 1   

 i = 0   

Design domain where 

the material properties 

have to be distributed 
Void: 

Solid: 

Bruyneel & Duysinx (2004) Duysinx (1996)
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NUMERICAL FORMULATION

◼ Finite elements (F.E.) discretisation of the design domain

◼ Density in each element = design variable

◼ Discrete variable 0-1 problem ➔ Continuous variable problem with 

penalisation

◼ SIMP interpolation of material properties
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An industrial application: Airbus engine pylon

Application 

– carried out by SAMTECH and ordered 
by AIRBUS

Engine pylon

= structure fixing engines to the wing

Initial Model

– CATIA V5 import → Samcef Model

– BC’s: through shell and beam FE

– 10 load cases: 

GUSTS

FBO (Fan blade out)

WUL (Without undercarriage 
landing)

Over 250.000 tetraedral FE
72



Airbus engine pylon

With courtesy by Samtech and Airbus Industries
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An industrial application: Airbus engine pylon

74



Topology optimization of catamaran hull

◼ Hole structure optimization ◼ Floor structure optimization

75

Load cases: Flexion, torsion, and local forces with the same magnitude

With courtesy by Samtech



◼ Development validated by industrial end-users in AERO+ project
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Topology optimization and additive manufacturing

Courtesy of Siemens-SAMTECH and SAFRAN


