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Introduction

Structural optimization applied to sizing (weight minimization) 
problem

– Finite element model

– Design variables are the transverse sizes of the structural 
members (Fixed geometry and material properties)

– Design restrictions
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TWO BAR TRUSS PROBLEM
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TWO-BAR TRUSS

▪ Let’s consider the example of the two-bar truss
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▪ Equilibrium between the 
external loads Px, Py and the 
internal efforts N1 and N2:

▪ For a general structure with n 
bars and m node, this matrix 
equation becomes



TWO-BAR TRUSS

▪ Internal forces can be found by solving the matrix equations to 
yield 

▪ For statically determinate structures, the number of equilibrium 
equations is equal to the number of unknown member internal 
forces and so the matrix B is square and full rank. However 
generally speaking for indeterminate structure, the matrix B is 
rectangular, and this does not hold in general as it will be seen 
for the three-bar-truss
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TWO-BAR TRUSS

▪ Thus for statically determinate structures, the internal bar forces 
depends only on the applied loads and of the direction cosines 
of the individual bars.

▪ Stresses

▪ They also depend on the applied load the geometry of the 
structure and the bar cross sectional areas x*.
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TWO-BAR TRUSS

▪ Let’s write the compatibility conditions and relate nodal 
displacements to the applied loads.

▪ The elongation of the bars are related to the free node 
displacements

▪ It comes

▪ We recognize the strain matrix B connecting the strains to the 
nodal displacement. 
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TWO-BAR TRUSS

▪ Bar strains

▪ Hook’s law

▪ Bar forces

▪ It yields
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TWO-BAR TRUSS

▪ Write the applied loads in terms of the displacements.

▪ Equation relating the applied loads to the displacements

▪ Generalized Hook matrix

▪ Stiffness matrix
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TWO-BAR TRUSS

▪ Evaluation of the displacements

▪ u gives all the displacement at all nodes and it is more usual in 
optimization to be interested in a specific displacement uj

corresponding to the jth degrees of freedom. 

▪ In order to extract the required components, the vector u can 
be multiplied by a vector ej which contains '0' elements 
everywhere except for the jth component which contains a '1' at 
this position.
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TWO-BAR TRUSS

▪ Remember that

▪ It is interesting to remark that

▪ It is interpreted as the set of internal forces in equilibrium with 
a unit load (1 N) applied on the degrees of freedom uj and 
acting in the direction of displacement component. 

▪ A unit load applied along degree of freedom j is called a dummy 
load.

▪ The expression of the displacement uj becomes
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TWO-BAR TRUSS

▪ The expression of the displacement uj

▪ Expanding this matrix product, we recover the familiar 
expression for calculating the magnitude of a specific nodal 
displacement in truss structures

▪ where ni
(j) represented components of the vector n(j) and li and 

xi are again the bar length and its cross-sectional areas
respectively.
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TWO-BAR TRUSS

▪ Let’s consider the particular case the two-bar truss with 45°
angles
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▪ Equilibrium between the 
external loads Px, Py and the 
internal efforts N1 and N2:



TWO –BAR TRUSS

▪ We shall consider the following particular cases:

▪ It comes

▪ And the stresses
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TWO-BAR TRUSS

▪ We want now to evaluate the displacement at the free 
node. 

▪ We use the dummy load case approach. Let's compute first the 
dummy load cases in both x and y directions at the free node.

▪ Px=1, Py=0

▪ Px=0, Py=1
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TWO-BAR TRUSS

▪ Insert these results into the expression

▪ For a horizontal displacement:

▪ For a horizontal displacement:
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TWO-BAR TRUSS

▪ The most elementary optimum design problem for this class of 
structure consists in finding a set of bar cross sectional areas 
which minimizes structural weight subject to limits on the 
allowable stresses in individual members. 

▪ Although the problem is in many aspects trivial, it nevertheless 
forms a useful model for illustrating some of the concepts which 
play important roles when more complex problems are 
considered. 17



TWO-BAR TRUSS
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TWO-BAR TRUSS

▪ The design problems requires that we find the vector x* for a 
structure minimizing the weight subject to stress constraints s.

▪ Because the structure is determinate each bar can be sized 
separately at the minimum value of the cross section to carry 
the applied loads. 

▪ They optimized cross sectional areas are given by
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TWO-BAR TRUSS

▪ If we take as starting point the set of bar cross sections x(0), 
and that we compute the related internal bar forces Ni

(0) and 
stresses si

(0), the optimized cross sections that lead to reach the 
maximum allowable stress s are given by the above formula:

▪ which we can immediately recognize as this stress-ratioing 
resuming reserving formula of the fully stressed design 
concepts, familiar in many practical application of machine 
design.
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TWO BAR TRUSS

▪ Returning to the simple two bar truss problem with 45 degrees 
angle

▪ If a minimum weight design is now sought subject to limitation 
on the bar stresses, then the constraints imposed on the design 
problem becomes

▪ The design restrictions are linear
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TWO-BAR TRUSS

▪ The problem is linear, and the constraints are parallel to the axis 
defined by the design variables x1, and x2. 

▪ It is clearly seen that each of these variable is associated with 
one and only one constraint and then the optimum design 
occurs at a vertex in design space. 

▪ The optimum can therefore be fought by seeking to 
simultaneously satisfy the design constraints rather than seeking 
to actually minimize the objective function. 

22



TWO-BAR TRUSS

▪ In later developments, we will show it is convenient to linearize 
the design constraints by using design variable defined as the 
reciprocal of the bar cross sectional areas. 

▪ The weight now becomes a nonlinear function

▪ The stress constraints remain linear function of the reciprocal 
variables
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TWO-BAR TRUSS
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TWO-BAR TRUSS

▪ We can continue our study of structural optimality theory by 
considering a statically determinate truss structure subject to 
constraints on specified nodal displacements.

▪ We seek for the minimum of the objective function, that is the 
structural weight, while satisfying to restriction over the two 
components of the nodal displacement.
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TWO-BAR TRUSS

▪ If we assume that the same material is used in each bar, the 
problem statement reads in the case of the two-bar truss with 
45 degree:
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TWO-BAR TRUSS

▪ If the cross-sectional areas are taken as design variables, the 
problem may not be convex as it is usually illustrated by 
returning to the two-bar example.
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TWO-BAR TRUSS

▪ To circumvent this difficulty, we can take the hint given in the 
previous section and use the reciprocal of the cross-sectional 
areas as design variables.

▪ The two-bar truss displacement constraint problem now 
becomes
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TWO-BAR TRUSS
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THREE BAR TRUSS PROBLEM
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THREE BAR TRUSS

▪ Famous example

▪ The load case is given by a given force P applied with an orientation b with 
respect to the horizontal line. 
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THREE BAR TRUSS

▪ The design variables: the bar cross sections

▪ Geometrical symmetry conditions

▪ Problem statement: mass minimization subject to stress constraints
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THREE BAR TRUSS

▪ The mass of the truss can be easily expressed as the volume of the bar 
times the density of the material:

▪ In particular case
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THREE BAR TRUSS

▪ Equilibrium:

▪ Can be obtained by looking at the free body diagram of the free 
node

▪ The problem is hyper static which means that the equilibrium 
equations are not sufficient to determine all unknown. We have 
only two equilibrium equations and three internal forces. To 
determine the bar loads, it is necessary to express the 
compatibility of the displacements at the free node.
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THREE BAR TRUSS

▪ Compatibility

▪ The elongation in terms of the longitudinal strains:

▪ Using the material behaviour, i.e. Hook's law relating stresses and 
strains, in the bars:
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THREE BAR TRUSS

▪ Express the compatibility of the displacements with the elongations. 
Let's denote by (u,v) the displacement of the lower node in the positive 
x and y directions.

▪ Elongation in bar 1 is related to the node displacements (u,v).
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THREE BAR TRUSS

▪ More generally if the bar makes an angle q with the horizontal 
direction, the displacement (u,v) along the local axis of the bar (x’,y’) 
can be obtained using the formula of the rotation with respect to the 
structural reference frame (x,y).

▪ Apply to bar 1: q=-45°

▪ Apply to bar 2: q=-90°

▪ Apply to bar 3: q=-135°
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THREE BAR TRUSS

▪ Relations between bar elongations and node displacement

▪ Combining with relations (1) and (3) and inserting (2) , it comes 

38



THREE BAR TRUSS

▪ Combining compatibility and behaviour relations yields
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THREE BAR TRUSS

▪ To determine the three member forces N1, N2 and N3, one has to solve 
the set of three equations:
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THREE BAR TRUSS

▪ Solution in the particular case b=45°

▪ That is

▪ Summing the two first equations yields:

▪ Inserting into the second equation provides

▪ Substitute these results into the third equation
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THREE BAR TRUSS

▪ From the value of N3, 

▪ one obtains the value of N1 and N2:
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THREE BAR TRUSS

▪ The optimization problem writes :
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THREE BAR TRUSS

▪ In the case of particular values of the parameters l=500 mm, a=45°, 
and P=10.000 N, the optimization problem statement becomes:
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THREE BAR TRUSS

Three bar truss structure

Objective function: lines 
with decreasing mass 
towards point (0,0)

Stress constraint 2 is a 
linear

Stress constraint 1 is clearly 
active at optimum

45



THREE BAR TRUSS

▪ Analytical solution of the optimization problem

▪ Only restriction 1 is active 
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THREE BAR TRUSS

▪ The problem can be rewritten to be easier to solve
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THREE BAR TRUSS

▪ The problem can be rewritten to be easier to solve

▪ Let’s denote

▪ Lagrangian function
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THREE BAR TRUSS

▪ Lagrangian function

▪ KKT conditions

▪ Solving KKT conditions for given l:
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THREE BAR TRUSS

▪ Solving KKT conditions for given l:

▪ For given l, we get the optimal values of the design variables
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THREE BAR TRUSS

▪ Determine Lagrange multiplier using the constraint

▪ Inserting the value of the design variables x1 and x2, it comes:
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THREE BAR TRUSS

▪ Determine Lagrange multiplier using the constraint

▪ Come back to the primal variable design optimal values
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THREE BAR TRUSS

▪ Solution
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