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HISTORICAL PERSPECTIVE
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ANALYTICAL SOLUTIONS USING HYPOTHESES

▪ For a time, structural analysis has made use of some 
hypotheses concerning the diffusion of forces or kinematics of 
the deformation of structural parts to find analytical or 
numerical solutions to complex problems. 

▪ For instance, the classical NAVIER beam theory is based on the 
following assumptions:

▪ The stress state is unidimensional,

▪ Cross sections remain plane during deformation,

▪ Cross sections remain orthogonal to the neutral axis.
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ANALYTICAL SOLUTIONS USING HYPOTHESES

▪ Assumptions of the classical 
NAVIER beam theory:

▪ The stress state is 
unidimensional,

▪ Cross sections remain plane 
during deformation,

▪ Cross sections remain 
orthogonal to the neutral
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BAR AND TRUSS MODEL

▪ Another famous case of approximation is the articulated truss.
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Connection = hinges

Bar = bears only 
traction / compression



BAR AND TRUSS MODEL

▪ Another famous case of approximation is the articulated truss.

▪ An idealization consisting to consider that each bar only 
works in stretching while carrying negligible bending 
moments

▪ The end connections, called nodes, are able to transmit 
poorly any moment and it thus supposed that they are close 
to pin join connection transmitting only traction and 
compressive forces
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BAR AND TRUSS MODEL

▪ Bar model:

▪ Stress state and effort

▪ Strain

▪ Behavior: Hooke law

▪ Bar stiffness 
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BAR AND TRUSS MODEL

▪ Assembling the bars into the structure

▪ Displacement of the nodes in the 
structural frame

▪ Forces components
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BAR AND TRUSS MODEL

▪ Now assembling the different bars may be performed by two 
ways:

▪ Displacement method: Express that the displacement of 
each node is uniquely determined and then find the value of 
the nodal displacements which leads to the equilibrium. 

▪ Force method: Express the sum of the forces at each node 
is equal to zero or to the applied nodes on the considered 
node. The solution of these equations is undetermined, 
depending on the arbitrary self-stresses whose number is 
equal to the hyperstaticity index of the structure. The self-
stresses are adjusted to ensure the uniqueness of the 
displacement at the nodes. 

▪ Both methods lead to a matrix system to be solved.
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BAR AND SHEAR PANELS

▪ Aeronautical structures use stiffened 
panels.

▪ A classical approximation consists in 
considering that a panel can only 
resist to shear loads. 

▪ Stretching is only supported by 
stiffeners (stringers and frames) 
which are modelled as bars. 

▪ Associating displacements to the 
shear forces, one comes to a matrix 
system to solve.
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MATRIX STRUCTURAL ANALYSIS

▪ These idealizations belong to the so-called matrix structural 
analysis, which was defined by Argyris (1954)

▪ Exact solution of a structure idealized on a physical basis. 

▪ A structure is really composed of frames, bars, panels, etc. 

▪ In each element, use is made of classical hypotheses that 
enable to evaluate their stiffness. 

▪ Matrix structural analysis is thus only a systematic way of 
solving a structure.
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TURNER, CLOUGH, MARTIN and TOPP (1956)

▪ In 1956, Turner, Clough, Martin, Topp, working on thin walled 
structures, imagined a new procedure. Subdividing arbitrarily 
each wall in triangular elements, they supposed that in each 
triangle, the displacement is linear:
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TURNER, CLOUGH, MARTIN and TOPP (1956)

▪ They show that it is possible to express the coefficients ai in 
terms of the displacements of the corners

▪ In each element, the stresses and strains are constant in such a 
way that it is easy to reckon the force corresponding to any 
nodal displacement. 

▪ Finally connecting the nodal displacements ensures the 
compatibility at each interface.

▪ This was the starting point of the finite element method!
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RAYLEIGH RITZ METHOD

▪ A further step was the recognition of the fact that the finite 
element method is nothing than a particular form of the well-
known Rayleigh-Ritz procedure. 

▪ As is well-known, the Rayleigh-Ritz procedure consists to define 
a basis of functions and to seek the coefficients of these 
functions which minimize a given functional. 

▪ In fact, finite elements lead to a particular appropriate basis.
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MATHEMATICAL FOUNDATIONS

▪ From this time, large progress have been made in finite element 
techniques and in their analysis.

▪ Mathematical foundations of FEM proceed from the functional 
analysis using for instance Sobolev spaces. 
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INTRODUCTORY PROBLEM

▪ Illustrate the FEM approach on a simple string problem taut by 
a force N

▪ Differential equations

▪ With boundary conditions
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ANALYTICAL SOLUTION p(x)=cste

▪ Integration of the differential equation

▪ Applying the boundary conditions

▪ It comes

▪ Displacement at mid-span x=L/2
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INTRODUCTORY PROBLEM

▪ The first step to find approximation solutions is to find a 
variational principle which is equivalent to the differential 
equation and the boundary conditions

▪ Every candidate for the solution u(x) is equal to zero at both 
ends:

▪ Such a displacement filed will be called kinematically admissible 
displacement. 

▪ A kinematically admissible displacement variation du is then 

defined as an arbitrary difference between two admissible 
displacements. It is therefore equal to zero at both ends.
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INTRODUCTORY PROBLEM

▪ Let's multiply the differential equation by a kinematically 
admissible variation and integrate on the domain

▪ Use integration by part

▪ Since we have kinematically admissible variation of 
displacement

19



INTRODUCTORY PROBLEM

▪ Noticing that

▪ We get

▪ And finally, the variational principle writes
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INTRODUCTORY PROBLEM

▪ The solution of the differential equation renders the functional 
F(u) stationary:

▪ with
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RAYLEIGH RITZ SOLUTION

▪ The Rayleigh-Ritz method consists in determining among all 
superpositions of given test functions u, the combination that 
renders the functional F(u) stationary. 

▪ Since the approximation is built from a combination of a set of 
basis (independent) functions, Rayleigh-Ritz method aims at 
determining the coefficients that are a minimizer of the 
functional.

▪ Assume a solution of the form
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RAYLEIGH RITZ SOLUTION

▪ For the sake of simplicity, we assume

▪ The functional writes

▪ To determine the value of the coefficients Ak, solve stationary 
conditions

▪ It comes
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RAYLEIGH RITZ SOLUTION

▪ The displacement at mid-span x=L/2

▪ Increasing the number of test functions, increases the precision
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FINITE ELEMENT SOLUTION

▪ The finite element method consists to split the domain into n 
intervals ]xi, xi+1[ and to interpolate linearly the displacement 
between the values at points 
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FINITE ELEMENT SOLUTION

▪ Let’s calculate the variational principle to determine the local 
values xi:

▪ Integrate on each interval
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FINITE ELEMENT SOLUTION

▪ Summing on all elements

▪ Values of ui coefficients, the local values of the displacements 
are obtained by minimizing the functional
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FINITE ELEMENT SOLUTION

▪ It is important to note that the finite element discretization is 
equivalent to a Rayleigh-Ritz method where the basis functions 
are the roof-type functions:
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FINITE ELEMENT SOLUTION

▪ Note that finally for piecewise linear approximations, which are 
used, the original differential equation has no sense. 

▪ However, the weak form based on the functional is meaningful. 
The variational principal, however, is well defined. 

▪ This is a specificity of finite elements: the approximate solutions 
are just able to ensure the existence of the variational principle, 
not of the local differential equation. In this direction note that 
regular functions are not unusual in engineering problems in 
practice. As an example if the string is submitted to a 
concentrated load the solution is precisely of roof-type.
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FINITE ELEMENTS OF BARS 
AND 

TRUSS STRUCTURES
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FINITE ELEMENT OF BARS

▪ We illustrate the development of displacement based finite 
elements with bar truss structures. 

▪ Simple case will be used to illustrate the different steps of 
matrix structural analysis, avoiding complications related to a 
more complex problem.

▪ Consider a bar of section A, 

▪ Young's modulus E, 

▪ Length L

▪ The end displacements 

of the bar along its axes 

are q1 and q2. 31



FINITE ELEMENT OF BARS

▪ Let's assume that the displacement along the bar is a linear 
piece wise function.

▪ Collect the displacements into a column vector

▪ The deformation along the bar is obtained by differentiating the 
displacement with respect to x variable:
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FINITE ELEMENT OF BARS

▪ The deformation along the bar is obtained by differentiating the 
displacement with respect to x variable:

▪ That is

▪ In matrix form:

▪ With the strain matrix
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FINITE ELEMENT OF BARS

▪ The axial stress is given by the uni directional Hooke's law:

▪ And

▪ The tension matrix T
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FINITE ELEMENT OF BARS

▪ To solve the problem using approximation, it is better to use a 
variational principle instead of local differential equations. In 
displacement based finite elements, the variational principle is 
given by the minimum of the total potential energy:

▪ The elastic energy

▪ The work of the load
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FINITE ELEMENT OF BARS

▪ For a bar, these expressions take a simplified form

▪ If we consider the FE approximation

▪ In structural matrix analysis, this expression finds the matrix 
form:
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FINITE ELEMENT OF BARS

▪ The matrix

▪ is called stiffness matrix in element local axes. The three last 
words refer to the fact that the displacements are expressed in 
the local axis of the bar.

▪ Note that this matrix is singular. Indeed one can observe that 
applying a uniform displacement corresponding to a rigid body 
motion yields no strain energy:
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FINITE ELEMENT OF BARS

▪ One should also notice that the expression can be obtained by 
inserting the finite element approximation into the variational 
principle. The strain energy can be written:

▪ One notices that the integrant is constant and it comes
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FINITE ELEMENT OF BARS

▪ And one identifies the expression of the stiffness matrix
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BAR STIFFNESS IN GLOBAL AXES

▪ Assembling the different bars of a truss implies that we have to 
use a unique axes system at each nodes ➔ cartesian system 

attached to the structure

▪ Displacement of each node is represented by its components u 
and v along respectively axis x and y
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BAR STIFFNESS IN GLOBAL AXES

▪ Let's denote by 'e' the bar index and by 'S' the structural 
coordinates. 

▪ The local displacements of the two nodes of the bar are 
expressed in terms of the node cartesian components of the 
displacements measured in the structural frame S.
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BAR STIFFNESS IN GLOBAL AXES

▪ The element strain energy is thus given either in local or in 
structural frames by

▪ We can deduce that the element stiffness in structural axes is
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BAR STIFFNESS IN GLOBAL AXES

▪ The rank of the element stiffness matrix in structural axes is the 
same as the stiffness matrix in local axes. 

▪ The stiffness being of dimension 4 and the rank being of 1, one 
can see that there are three singularity modes that can be 
interpreted as three rigid body modes:

▪ u1=1, v1=0, u2=1, v2=0, i.e. translation along the axis x;

▪ u1=0, v1=1, u2=0, v2=1, i.e. translation along the axis y;

▪ u1=0, v1=0, u2=-sin q, v2=cos q, i.e. rotation about the 

point 1.
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ASSEMBLING THE BARS

▪ The global displacement vector

▪ Considering the truss structure, the global displacement vector 
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ASSEMBLING THE BARS

▪ Each element has 4 displacements components which have to 
be indexed in the global displacement vector by an element 
localization matrix Le. 

▪ From a formal point of view the link between the element 
displacement vector Sqe and the structural displacement vector 
Sq can be realized by applying a matrix with appropriate 1 in 
the right positions and 0 everywhere else.
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ASSEMBLING THE BARS

▪ Example: the bar 1 connecting node 1 and 4 takes the form:
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ASSEMBLING THE BARS

▪ From a computational point of view, this approach would be a 
complete nonsense because it would involve a large number of 
trivial operations. 

▪ Thus in practice it is preferred to resort to a localization 
procedure involving a pointer type approach. For each element, 
the element localization table

▪ returns the list of the degrees of freedom in the structural 
vector that corresponds to the local displacements. It comes
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ASSEMBLING THE BARS

▪ Coming back to the example of the 7-bar truss, the localization 
element table
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ASSEMBLING THE BARS

▪ The energy being a local quantity, everything can be carried out 
element by element. Thus the strain energy is evaluated as 
follows

▪ So the stiffness matrix of the structure is clearly
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ASSEMBLING THE BARS

▪ Again, using the localization matrices would be not 
computationally efficient so one uses the localization table:

▪ In practice the structural matrix is assembled by assigning the 
contribution of each stiffness term at the corresponding position 
determined by the localization table.
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ASSEMBLING THE BARS
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ASSEMBLING THE BARS

▪ In the case study, the truss is such that we have the following 
contributions of the elements to the different degrees of 
freedom of the structural stiffness matrix
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SOLUTION OF THE ELASTIC PROBLEM

▪ Considering the application example, let us assume that there is 
a load F along -y direction at node 2. The load vector in 
structural axes is given by setting the applied force component 
in the global load vector. In the particular case study, one has:

▪ The variational principle reads:
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SOLUTION OF THE ELASTIC PROBLEM

▪ The stationary conditions provide the linear system that is the 
equilibrium equation of the system.

▪ Taking into account the boundary conditions, the stiffness 
matrix of the system becomes invertible.

▪ The boundary conditions can be taken into account by 
suppressing the corresponding lines and columns to these 
degrees of freedom. 
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SOLUTION OF THE ELASTIC PROBLEM

▪ The boundary conditions can be taken into account by 
suppressing the corresponding lines and columns to these 
degrees of freedom. 
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EXAMPLE: THREE BAR TRUSS

▪ Let’s consider the three-bar truss problem
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EXAMPLE: THREE BAR TRUSS

▪ Stiffness matrices of bars are derived from the general 
expression

▪ Bar 1
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EXAMPLE: THREE BAR TRUSS

▪ Bar 2

▪ Bar 3
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EXAMPLE: THREE BAR TRUSS

▪ Let’s assemble the element stiffness matrices. 

▪ Because of boundary conditions, displacements of nodes 1, 2, 
and 3 are eliminated

▪ Let’s consider the symmetric geometrical configuration A1=A3
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EXAMPLE: THREE BAR TRUSS

▪ In structural axis, the full system equations write:
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EXAMPLE: THREE BAR TRUSS

▪ In structural axis, the full system equations write:
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EXAMPLE: THREE BAR TRUSS

▪ In structural axis, the full system equations write:
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EXAMPLE: THREE BAR TRUSS

▪ Assembling the element stiffness matrices
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EXAMPLE: THREE BAR TRUSS

▪ Let’s apply the boundary conditions

▪ Nodes 1, 2 and 3 are fixed

▪ Lines and columns corresponding to these dof are deleted
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EXAMPLE: THREE BAR TRUSS

▪ Let’s consider the symmetric geometrical configuration A1=A3

▪ The reduced system writes
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EXAMPLE: THREE BAR TRUSS

▪ Let’s calculate the displacements at the free node:

▪ The solution writes

▪ If k2=0
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EXAMPLE: THREE BAR TRUSS

▪ Let’s calculate the displacements at the free node:

▪ If b=45°
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FINITE ELEMENT IN ELASTICITY
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FINITE ELEMENT DISCRETIZATION

Strain energy of a structure

Constitutive equations relating the stresses and the strains

It comes
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FINITE ELEMENT DISCRETIZATION

The compatibility equations relate the strains to the 
displacements:

While the finite element approximation relies on the 
interpolation of the displacements using shape functions N and 
the nodal unknowns q.

It comes
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FINITE ELEMENT DISCRETIZATION

The strain energy takes the form

The stiffness matrix of the element e is:

The discretized strain energy
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FINITE ELEMENT DISCRETIZATION

The degrees of freedom of the element (node displacements) 
are related to the degrees of freedom of the whole structure 
using the localization matrix Le:

The structural strain energy

With the structural stiffness matrix
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FINITE ELEMENT DISCRETIZATION

A similar development can be performed to express the 
generalized load vector:

With the element and structural load vectors

The external work of the applied loads
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FINITE ELEMENT DISCRETIZATION

The total potential energy of the structure is:

The principle of the minimum total potential energy yields the 
equilibrium equation
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