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Equations of analysis
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STATICALLY DETERMINATE AND INDETERMINATE STRUCTURES

Statically determinate 
structures

– #Unknowns = 
#Equilibrium equations 

– Equilibrium determines 
completely the problem

Indeterminate structures

– #Unknowns > 
#Equilibrium equations

– Elastic redistribution of 
internal loads with the 
stiffness

– Principle of minimum 
energy to determine 
unknowns
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let's suppose that the body is discrete in nature, for instance 
truss structure, or it is discretized into finite elements, i.e. 
continuum structure.
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▪ The continuous displacement field 
u(x) in the elements can be 
approximated using local shape 
functions N(x) while the unknowns 
are the nodal displacements, which 
can be collected in the unknown 
vector q.



ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ For truss elements, one assumes a linear displacement field:

▪ With the shape functions (interpolation functions)
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ The compatibility equations relates the displacements u to the 
strain components e. 

▪ For one dimensional truss element, only the axial strain is non-
trivial

▪ Coming back to the Finite Element framework, it comes that one 
can apply the differentiation operator to shape function matrix
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ For a bar, the strain matrix writes:
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ The constitutive equations describe the relation between the 
stresses and the strain. For a linear elastic behaviour, the stress-
strain relation is linear and writes in terms of the Hook 
coefficients:

▪ In the particular case of truss structure, the Hook matrix 
degenerates into a single scalar value
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let's express the element strain energy Ue.

▪ Introducing the stress-strain relationships, the compatibility 
equations, and the discretization scheme, one finds:

9



ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ This expression puts forward the expression of the element 
stiffness matrix:

▪ In the particular case of bar truss element, it comes
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ For truss structures, local axial displacements must be 
expressed in terms of their components in the structural frame.

▪ In matrix form, one can write
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Finally the element stiffness matrix in structural frame is given 
by:
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ANALYSIS OF FE DISCRETIZED STRUCTURES

Strain energy of a structure

The strain energy can be calculated as the sum of element 
strain energies.

Using the expression of the element strain energy and the 
element displacements and stiffness matrices, one can write
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ We have now to express the element degrees of freedom in 
terms of the degrees of freedom of the whole structure. 
Formally, the element displacement vector can be extracted 
from la the structural displacement vector by using a localization 
matrix Le made of a few identity terms placed at the terms to 
be extracted.

▪ with
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ The structural strain energy takes the form

▪ With the structural stiffness matrix:
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ANALYSIS OF FE DISCRETIZED STRUCTURES

A similar development can be performed to express the 
generalized load vector:

With the element and structural load vectors

The external work of the applied loads
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ANALYSIS OF FE DISCRETIZED STRUCTURES

The total potential energy of the structure is:

The principle of the minimum total potential energy yields the 
equilibrium equation
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let's define two unrelated states for the body:

▪ The s-state : This shows external surface forces T, body 
forces f, and internal stresses s in equilibrium.

▪ The e-state : This shows continuous displacements u* and 
consistent strains e*.

▪ The superscript * emphasizes that the two states are 
unrelated. 

▪ The principle of virtual work then states: External virtual work is 
equal to internal virtual work when equilibrated forces and 
stresses undergo unrelated but consistent displacements and 
strains.
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ We may specialize the virtual work equation and derive the 
principle of virtual displacements in variational notations :

▪ Virtual displacements and strains as variations of the real 
displacements and strains using variational notation such as 
du = u* and de = e*;

▪ Virtual displacements be zero on the part of the surface that 
has prescribed displacements, and thus the work done by 
the reactions is zero. There remains only external surface 
forces on the part St that do work.

▪ The virtual work equation then becomes the principle of virtual 
displacements:
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ This relation is equivalent to the set of equilibrium equations 
written for a differential element in the deformable body as well 
as of the stress boundary conditions on the part St of the 
surface.
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let's consider a system with known actual deformations e, which 
are supposedly consistent, giving rise to displacements u 
throughout the system. 

▪ For example, a point P has moved to P', and one wants to 
compute the displacement uP of P in a considered direction n. 

▪ For this particular purpose, we choose the following virtual unit 
force system:

▪ The unit force F(1) is located at P and acts in the direction of 
n so that the external virtual work done by F(1) is, noting 
that the displacement in P along direction n.

▪ The internal virtual work done by the virtual stresses is
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Equating the two work expressions gives the desired 
displacement:

▪ Let's consider the Principle of Virtual Work under discretized 
finite element form. Let's consider a variation of the 
displacement field du. It is consistent with the strain field de.

▪ The Principle of Virtual Work states the internal work of the 
stress under the variation of the strains is equal to the external 
work of the applied loads against the variation of the 
displacement field.
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Berke’s approximation
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VIRTUAL WORK

The virtual work theorem states that the equality holds for any 
kinematically admissible virtual fields

Let’s consider the compatible displacement in equilibrium with 
any virtual load vector:

The theorem of virtual work leads to:

24



VIRTUAL WORK

Use the virtual work,

By choosing a smart virtual displacement / vector field for 
instance, if the virtual load vector is chosen as a unit load vector 
under the displacement u that one wants to determine,

One gets

With 
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VIRTUAL WORK

For many design variables, the stiffness matrix takes the 
interesting form:

For instance:

– Truss structures xi =Ai

– Plate structures xi =ti
– Beam structures xi =hi³

– Shell structures xi =ti³
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VIRTUAL WORK

One can decompose the contribution of each element:

It is usual to define the flexibility coefficients:

So that the expression of displacement writes
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VIRTUAL WORK

▪ For isostatic structures, we will show that these flexibility 
coefficient ci are constant. 

▪ One can intuitively understand the result. If the internal load 
remains constant, increasing the sizing variables will reduce the 
element displacements as the inverse of variables. In the 
proposed flexibility coefficient, the denominators and the 
numerators both evolves as xi

2 and cancels each other. Of 
course in case of indeterminate structures, there is a 
redistribution of the load and the flexibility coefficient do not 
remain strictly constant so the assuming that the ci coefficients 
are constant is only a local approximation around the current 
design point.
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VIRTUAL WORK

▪ Let's now investigate the physical interpretation of the Berke 
expression using truss structures. 

▪ Indeed in this particular case, it is easy to express the formula 
in terms of the forces. It comes:
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VIRTUAL WORK

▪ For truss structures, the compliance matrix (inverse of stiffness 
matrix) and the element load vectors have simple expressions 
since they are simple scalars:

▪ Applying a unit dummy load case generates a system of internal 
loads which are in equilibrium

▪ It comes
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VIRTUAL WORK

▪ Therefore the flexibility coefficients writes

▪ For isostatic trusses, ci is obviously constant since the element 
loads and remain independent of the sizing variables!

▪ In the next chapter, it will be proved that Berke's explicit 
expression are in fact first order approximations of the real 
displacement. This approximation is equivalent to a first order 
Taylor expansion using a change of design variables, i.e. after 
using intermediate reciprocal variables.
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VIRTUAL WORK

For indeterminate structures, the load redistribution is generally 
weak and the ci are nearly constant:

And the following expression is generally a very good expression 
of the displacement u:
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