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LAYOUT OF THE LESSON

Introduction & Motivation 

Analysis using Principle of Virtual Work and Finite Element 
Method

Optimality criteria for fully stressed design

Berke’s approximation of displacement

Optimality criteria for a single displacement constraint

Optimality criteria for several displacement and stress 
constraints
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INTRODUCTION & MOTIVATION
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Introduction: Historical Context

▪ First developments: 1960 L. Schmit

▪ Extension of the approach carried out in economy, in 
chemical engineering, etc.

▪ Structural analysis: first Finite Element Models.

▪ Only simple elements: bars, shear panels, plates, beams, 
shells…

▪ Conquest of air and space: lightweight thin-wall structures

▪ Geometrical modelling, free mesh generation, sensitivity 
analysis, etc. are not yet developed

▪ Design variables are sizing variables attached to the F.E.

▪ Development of computers and their application to engineering
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Introduction: Historical Context

▪ Mathematical Programming methods are under construction

▪ Unconstrained minimization → OK

▪ Linear programming (linear objective function subject to 
linear constraints) → OK

▪ Nonlinear programming: nonlinear objective function 
subject to  nonlinear constraints → Under development in 

the 1960ies

▪ Extension of optimization methods for linear constraints

▪ Strategy based on the following the active constraints

▪ Alternating minimization phases and restoring phases to 
come to feasible domain → projection methods

▪ Feasible direction methods

➔ Costly and so not applicable to engineering problems 

because non explicit problems requires one FE analysis at 
each function evaluation 5



Introduction: Historical Context

▪ Focus on sizing problems of linear elastic structures with thin 
walls

▪ Design variables are the cross-sectional areas and plate 
thicknesses

▪ Typical problems: n-bar truss…

▪ Mass minimization

▪ Research for the development of fast convergence and reliable 
algorithms involving little novel concepts (apart from the 
sensitivity analysis)

▪ No additional development at F.E. level

▪ Design variables are properties of F.E. (fixed mesh, discrete 
variables)
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Introduction: Historical Context

▪ Search for an alternative approach to Mathematical 
Programming methods, which are too costly.

▪ Optimization becomes a particular field concerned with 
aerospace and research.
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Introduction: Mathematical Programming approach

▪ MP approach aims at solving structural optimization problems 
combining a general numerical optimization algorithm and a 
computer simulation code (e.g. FEM)

▪ Different approaches are possible

▪ Direct methods

▪ Projection methods

▪ Feasible direction (Zoutendijk)

▪ Reduced gradient

▪ Solution cost is proportional to the problem size
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Introduction: Mathematical Programming approach

▪ Transformation methods:

▪ The solution cost of the transformed problem growths with 
its size.

▪ The number of transformed problems to build and solve 
depends on the quality (accuracy, precision…) of the 
transformation

▪ Two main groups of approaches

▪ Unconstrained minimization methods

▪ Methods based on approximations
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Introduction: Mathematical Programming approach

▪ Transformation methods:

▪ Unconstrained minimization methods

▪ Interior penalty methods

▪ Exterior penalty methods

▪ Extended interior penalty methods

▪ Augmented Lagrangian method

▪ Methods based on approximations

▪ Linear Sequential Programming

▪ Quadratic Sequential Programming

▪ Sequential Convex Linearization (CONLIN, MMA…)
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Introduction: Mathematical Programming approach

▪ In any cases, 

▪ Mathematical Programming approach is generally reliable

▪ The sensitivity analysis is necessary because MP are based 
on the derivatives (at least first order derivatives, the 
gradients)

▪ Older methods are not applicable to structural optimization 
because of their poor performance

▪ Research since the 60ies

▪ Reduction of the cost of sensitivity analysis

▪ Automatic differentiation, iterative methods, 
approximate re-analysis

▪ Development of optimality criteria methods

▪ Development of approximation concepts
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Introduction: Optimality Criteria methods

▪ OC are based on the (strong) hypothesis that we know the set 
of active constraints at optimum

▪ One makes use of KKT conditions to draw the redesign rules.

▪ Developments are generally based on isostatic cases and then 
extended to indeterminate structures

▪ The simplest optimality criterion: the Fully Stressed Design 
(FSD)
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Introduction

Structural optimization applied to sizing (weight minimization) 
problem

– Finite element model

– Design variables are the transverse sizes of the structural 
members (Fixed geometry and material properties)

– Design restrictions
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Introduction

Design constraints gj(x)<0

– Implicit functions

– Nonlinear functions

– One constraint evaluation requires a complete FE analysis

Side constraints: simple and explicit

– Fabrication / technological / physical constraints

– Treated separately in most methods

Iterative process ➔ HIGH COST
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INTRODUCTION

Optimality criteria techniques (OC)

– Highly specific

– Intuitive techniques, simple

– Convergence to a design that is not necessarily optimal (KKT 
conditions)

– Difficulties in identifying the set of active constraints

– Convergence instabilities

– Small number of reanalyses, independent of the number of 
design variables

Résumé

– Low cost

– But uncertainty convergence
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INTRODUCTION

Pure Mathematical Programming methods

– Very general

– Rigorous methods, quite elaborated

– Convergence to a local minimum

– Stable and monotonic convergence

– Large number of reanalyzes, growing with the number of 
design variables

Résumé

– Rigorous framework & guaranteed convergence

– High cost (Growing computational cost with the size of the 
problem)
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ANALYSIS USING 
PRINCIPE OF VIRTUAL WORK 

AND 
FINITE ELEMENT
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STATICALLY DETERMINATE AND INDETERMINATE STRUCTURES

Statically determinate structures

– #Unknowns = #Equilibrium 
equations 

– Equilibrium determines 
completely the problem

Indeterminate structures

– #Unknowns > #Equilibrium 
equations

– Elastic redistribution of 
internal loads with the 
stiffness

– Principle of minimum energy 
to determine unknowns
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PRINCIPLE OF VIRTUAL WORK

▪ Let's define two unrelated states for the body:

▪ The s-state : This shows external surface forces t, body 
forces f, and internal stresses s in equilibrium.

▪ The e-state : This shows continuous displacements u* and 
consistent strains e*.

▪ The superscript * emphasizes that the two states are 
unrelated. 

▪ The principle of virtual work then states: External virtual work is 
equal to internal virtual work when equilibrated forces and 
stresses undergo unrelated but consistent displacements and 
strains.
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PRINCIPLE OF VIRTUAL WORK

▪ We may specialize the virtual work equation and derive the 
principle of virtual displacements in variational notations :

▪ Virtual displacements and strains as variations of the real 
displacements and strains using variational notation such as 
du = u* and de = e*;

▪ Virtual displacements be zero on the part of the surface that 
has prescribed displacements, and thus the work done by 
the reactions is zero. There remains only external surface 
forces on the part St that do work.

▪ The virtual work equation then becomes the principle of virtual 
displacements:
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PRINCIPLE OF VIRTUAL WORK

▪ This relation is equivalent to the set of equilibrium equations 
written for a differential element in the deformable body as well 
as of the stress boundary conditions on the part St of the 
surface.
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let's suppose that the body is discrete in nature, for instance 
truss structure, or it is discretized into finite elements, i.e. 
continuum structure.
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▪ The continuous displacement field 
u(x) in the elements can be 
approximated using local shape 
functions N(x) while the unknowns 
are the nodal displacements, which 
can be collected in the unknown 
vector q.



ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ The compatibility equations relates the displacements u to the 
strain components e. 

▪ The constitutive equations relate the stresses and the strains. 

▪ For a linear elastic behavior, the stress-strain relation is 
linear and writes in terms of the Hook coefficients:

▪ Inserting the strain matrix, one can calculate the stress in terms 
of the nodal displacements
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let’s write the discretized form of the Principle of Virtual Work 
using finite element approximation:

▪ Let's consider a variation of the displacement field du. 

▪ It is consistent with the strain field de.
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Internal virtual work:

▪ The element and the global stiffness matrices
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ We have now to express the element degrees of freedom in 
terms of the degrees of freedom of the whole structure. 
Formally, the element displacement vector can be extracted 
from la the structural displacement vector by using a localization 
matrix Le made of a few identity terms placed at the terms to 
be extracted.

▪ with
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Virtual work of external loads:

▪ The element and global load vector
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ANALYSIS OF FE DISCRETIZED STRUCTURES

The principle of virtual work discretized with Finite Element 
approximation writes:

The virtual displacement being arbitrary, the principle of virtual 
work yields the equilibrium equation
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INTRODUCTION TO OPTIMALITY CRITERIA
TWO BAR TRUSS
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TWO-BAR TRUSS

▪ Let’s consider the example of the two-bar truss

30

▪ Equilibrium between the 
external loads Px, Py and the 
internal efforts N1 and N2:

▪ For a general structure with n 
bars and m node, this matrix 
equation becomes



TWO-BAR TRUSS

▪ Internal forces can be found by solving the matrix equations to 
yield 

▪ For statically determinate structures, the number of equilibrium 
equations is equal to the number of unknown member internal 
forces and so the matrix B is square and full rank. However 
generally speaking for indeterminate structure, the matrix B is 
rectangular, and this does not hold in general as it will be seen 
for the three-bar-truss
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TWO-BAR TRUSS

▪ Thus for statically determinate structures, the internal bar forces 
depends only on the applied loads and of the direction cosines 
of the individual bars.

▪ Stresses

▪ They also depend on the applied load the geometry of the 
structure and the bar cross sectional areas x*.
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TWO-BAR TRUSS

▪ Let’s write the compatibility conditions and relate nodal 
displacements to the applied loads.

▪ The elongation of the bars are related to the free node 
displacements

▪ It comes

▪ We recognize the strain matrix B connecting the strains to the 
nodal displacement. 
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TWO-BAR TRUSS

▪ Bar strains

▪ Hook’s law

▪ Bar forces

▪ It yields
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TWO-BAR TRUSS

▪ Write the applied loads in terms of the displacements.

▪ Equation relating the applied loads to the displacements

▪ Generalized Hook matrix

▪ Stiffness matrix
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TWO-BAR TRUSS

▪ Evaluation of the displacements

▪ u gives all the displacement at all nodes and it is more usual in 
optimization to be interested in a specific displacement uj

corresponding to the jth degrees of freedom. 

▪ In order to extract the required components, the vector u can 
be multiplied by a vector ej which contains '0' elements 
everywhere except for the jth component which contains a '1' at 
this position.
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TWO-BAR TRUSS

▪ Remember that

▪ It is interesting to remark that

▪ It is interpreted as the set of internal forces in equilibrium with 
a unit load (1 N) applied on the degrees of freedom uj and 
acting in the direction of displacement component. 

▪ A unit load applied along degree of freedom j is called a dummy 
load.

▪ The expression of the displacement uj becomes
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TWO-BAR TRUSS

▪ The expression of the displacement uj

▪ Expanding this matrix product, we recover the familiar 
expression for calculating the magnitude of a specific nodal 
displacement in truss structures

▪ where ni
(j) represented components of the vector n(j) and li and 

xi are again the bar length and its cross-sectional areas
respectively.

38



TWO-BAR TRUSS

▪ Let’s consider the particular case the two-bar truss with 45°
angles
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▪ Equilibrium between the 
external loads Px, Py and the 
internal efforts N1 and N2:



TWO –BAR TRUSS

▪ We shall consider the following particular cases:

▪ It comes

▪ And the stresses
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TWO-BAR TRUSS

▪ We want now to evaluate the displacement at the free 
node. 

▪ We use the dummy load case approach. Let's compute first the 
dummy load cases in both x and y directions at the free node.

▪ Px=1, Py=0

▪ Px=0, Py=1
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TWO-BAR TRUSS

▪ Insert these results into the expression

▪ For a horizontal displacement:

▪ For a horizontal displacement:
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TWO-BAR TRUSS

▪ The most elementary optimum design problem for this class of 
structure consists in finding a set of bar cross sectional areas 
which minimizes structural weight subject to limits on the 
allowable stresses in individual members. 

▪ Although the problem is in many aspects trivial, it nevertheless 
forms a useful model for illustrating some of the concepts which 
play important roles when more complex problems are 
considered. 43



TWO-BAR TRUSS
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TWO-BAR TRUSS

▪ The design problems requires that we find the vector x* for a 
structure minimizing the weight subject to stress constraints s.

▪ Because the structure is determinate each bar can be sized 
separately at the minimum value of the cross section to carry 
the applied loads. 

▪ They optimized cross sectional areas are given by
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TWO-BAR TRUSS

▪ If we take as starting point the set of bar cross sections x(0), 
and that we compute the related internal bar forces Ni

(0) and 
stresses si

(0), the optimized cross sections that lead to reach the 
maximum allowable stress s are given by the above formula:

▪ which we can immediately recognize as this stress-ratioing 
resuming reserving formula of the fully stressed design 
concepts, familiar in many practical application of machine 
design.
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TWO BAR TRUSS

▪ Returning to the simple two bar truss problem with 45 degrees 
angle

▪ If a minimum weight design is now sought subject to limitation 
on the bar stresses, then the constraints imposed on the design 
problem becomes

▪ The design restrictions are linear
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TWO-BAR TRUSS

▪ The problem is linear, and the constraints are parallel to the axis 
defined by the design variables x1, and x2. 

▪ It is clearly seen that each of these variable is associated with 
one and only one constraint and then the optimum design 
occurs at a vertex in design space. 

▪ The optimum can therefore be fought by seeking to 
simultaneously satisfy the design constraints rather than seeking 
to actually minimize the objective function. 
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TWO-BAR TRUSS

▪ In later developments, we will show it is convenient to linearize 
the design constraints by using design variable defined as the 
reciprocal of the bar cross sectional areas. 

▪ The weight now becomes a nonlinear function

▪ The stress constraints remain linear function of the reciprocal 
variables
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TWO-BAR TRUSS
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TWO-BAR TRUSS

▪ We can continue our study of structural optimality theory by 
considering a statically determinate truss structure subject to 
constraints on specified nodal displacements.

▪ We seek for the minimum of the objective function, that is the 
structural weight, while satisfying to restriction over the two 
components of the nodal displacement.
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TWO-BAR TRUSS

▪ If we assume that the same material is used in each bar, the 
problem statement reads in the case of the two-bar truss with 
45 degree:

52



TWO-BAR TRUSS

▪ If the cross-sectional areas are taken as design variables, the 
problem may not be convex as it is usually illustrated by 
returning to the two-bar example.
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TWO-BAR TRUSS

▪ To circumvent this difficulty, we can take the hint given in the 
previous section and use the reciprocal of the cross-sectional 
areas as design variables.

▪ The two-bar truss displacement constraint problem now 
becomes
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TWO-BAR TRUSS
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OPTIMALITY CRITERIA

Principle of Virtual Work and Finite Element notations

Optimality criteria for fully stressed design

Berke’s approximation of displacement

Optimality criteria for a single displacement constraint

Optimality criteria for several displacement and stress 
constraints
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OPTIMALITY CRITERIA

▪ General approach adopted by Optimality Criteria applied to the 
mass minimization problems

▪ Write a priori the conditions that must be satisfied by the
optimal design.

▪ KKT conditions of the optimum design problem

▪ Based on isostatic problems

▪ Deduce a recursive relation to be iteratively applied to obtain 
the optimal design

▪ “Primal design variables” (sizing variables) are given in term 
of the “dual variables” (Lagrange multipliers)

▪ Update of “dual variables” (Lagrange multipliers) to satisfy 
the active constraints (and KKT conditions)
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OPTIMALITY CRITERIA

▪ 1/ Optimality conditions are derived for isostatic (determinate) 
structures.

▪ ➔ exact solution in that particular case

▪ ➔ convergence in 1 iteration

▪ 2/ Extension to the general case of hyperstatic (indeterminate) 
structures

▪ ➔ approximate solution

▪ ➔ iterative scheme
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OPTIMALITY CRITERIA

▪ Identified difficulties

▪ Select a priori the set of active constraints that will be used 
in the optimality conditions

▪ Convergence to design points which are not necessarily KKT
point for the general case
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OPTIMALITY CRITERIA

▪ Primal optimization problem with constraints

▪ Karush Kuhn Tucker optimality conditions
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FULLY STRESSED DESIGN
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FULLY STRESSED DESIGN

▪ The first considered optimality criteria is the most famous one: 
Fully Stressed Design

▪ It is founded on the intuitive hypothesis, but non analytically 
justified, that all components in the optimized structure reach 
simultaneously their maximum allowable stress, generally 
calculated based on a linear elastic analysis.

▪ It is simple, easy to implement, fast convergent

▪ Often used by engineers in practice for structures subject to 
stress restrictions only.
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FULLY STRESSED DESIGN

Fully stressed design criterion (FSD)

"The maximum allowable stress is attained in each member 
under at least one of the applied load cases"

The mathematical statement of the problem of the minimum 
weight problem subject to stress constraints in each member i, 
writes as following
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FSD for isostatic case: Example two-bar-truss

Weight

Stress Efforts

Optimization problem
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FSD for isostatic case: Example two-bar-truss

Optimum (analytical solution)

Redesign formula

If one performs a first analysis (which is not optimal) with the 
set of design variables x(0): 
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FSD for isostatic case: Example two-bar-truss

FSD is exact in this case, because the two-bar-truss is a 
determinate structure.

It is true for all statically determinate structures, because the 
internal efforts are constant and do not depend on the stiffness 
distribution.

If one adds one bar (three bar truss), the truss is indeterminate, 
and the efforts depends on all the design variables. ➔ FSD 

becomes an approximation
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FULLY STRESSED DESIGN

Stress in member ‘i’ under load case ‘l’ 

With xi the cross section and Qi the member force

Bounding the maximum stress in member i for any load case l 
writes

Iteration scheme: stress ratio formula
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FULLY STRESSED DESIGN

Stress ratio formula

The formula is rigorous for one single load case, one material.

For statically indeterminate structures, the FSD is approximate.

FSD can be extended to other elements than truss structures, 
for instance by considering the von Mises stress (e.g. in plane 
stress plate) in the stress ratio formula
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FULLY STRESSED DESIGN

▪ Fast convergence (When it converges!)

▪ The number of reanalysis steps (F.E. calculations) is small and 
weakly dependent to the number of design variables

▪ No sensitivity analysis is required

▪ Simple criteria.

▪ Easy to implement in structural analysis computer codes.

▪ Independent of the F.E. code.

▪ Minimum size gauge can be added

69



FULLY STRESSED DESIGN

FSD Leads to a vertex of the design space.

70



FSD for general case (hyperstatic)

▪ FSD replaces the stress restrictions by hyperplanes parallel to 
the axes

▪ The objective function disappears from the formulation

▪ Provided that all coefficient in the objective function are 
positive

▪ Solution is always located in a vertex of the design space

▪ Not always the case when strongly hyperstatic problems 
with redistribution of the internal loads

▪ In these cases, it can lead to non optimal solutions and 
oscillatory convergence processes.
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Example FSD

Three bar truss structure

FSD is not always the optimum

72



73

Ten-bar-truss example

The stress-ratioïng itself 
tends to increase the 
design variable with the 
smallest stress limit

Example: stress limit = 
25000psi except in 
member 8 with a variable 
limit from 25000 to 70000 
psi
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Ten-bar-truss example
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FULLY STRESSED DESIGN

FSD leads to a statically determinate structure extracted from 
the initial truss structure.
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Interpretation of FSD

Stress ratio formula:

The real stress constraint is implicit. 

It is replaced with an explicit approximation of the stress 
constraint:
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Interpretation of FSD

The value of the approximation is 
exact in x0

It is also exact along the scaling 
line

The derivatives are not respected

FSD ➔ Zero order approximation 

in x0 (and also along the scaling 
line)
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Berke’s approximation
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Let's consider a system with known actual deformations e, which 
are supposedly consistent, giving rise to displacements u 
throughout the system. 

▪ For example, a point P has moved to P', and one wants to 
compute the displacement uP of P in a considered direction n. 

▪ For this particular purpose, we choose the following virtual unit 
force system:

▪ The unit force F(1) is located at P and acts in the direction of 
n so that the external virtual work done by F(1) is, noting 
that the displacement in P along direction n.

▪ The internal virtual work done by the virtual stresses is
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ANALYSIS OF FE DISCRETIZED STRUCTURES

▪ Equating the two work expressions gives the desired 
displacement:

▪ Let's consider the unit load (1 N) applied on the considered 
displacement along the positive direction n

▪ The internal displacement field which leads to equilibrium while 
satisfying compatibility equations is solution
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VIRTUAL WORK

Use the virtual work,

It comes

One gets

With 
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VIRTUAL WORK

For many design variables, the stiffness matrix takes the 
interesting form:

For instance:

– Truss structures xi =Ai

– Plate structures xi =ti
– Beam structures xi =hi³

– Shell structures xi =ti³
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VIRTUAL WORK

One can decompose the contribution of each element:

It is usual to define the flexibility coefficients:

So that the expression of displacement writes
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VIRTUAL WORK

▪ For isostatic structures, we will show that these flexibility 
coefficient ci are constant. 

▪ One can intuitively understand the result. If the external load 
remains constant, increasing the sizing variables will reduce the 
element displacements as the inverse of variables. In the 
proposed flexibility coefficient, the denominators and the 
numerators both evolves as xi

2 and cancels each other. Of 
course in case of indeterminate structures, there is a 
redistribution of the load and the flexibility coefficient do not 
remain strictly constant so the assuming that the ci coefficients 
are constant is only a local approximation around the current 
design point.
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VIRTUAL WORK

▪ Let's now investigate the physical interpretation of the Berke’s 
expression using truss structures. 

▪ Indeed in this particular case, it is easy to express the formula 
in terms of the forces. It comes:
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VIRTUAL WORK

▪ For truss structures, the compliance matrix (inverse of stiffness 
matrix) and the element load vectors have simple expressions 
since they are simple scalars:

▪ Applying a unit dummy load case generates a system of internal 
loads which are in equilibrium

▪ It comes
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VIRTUAL WORK

▪ Therefore the flexibility coefficients writes

▪ For isostatic trusses, ci is obviously constant since the element 
loads and remain independent of the sizing variables!

▪ For indeterminate structures, the ci’s are nor constant and the 
Berke's explicit expression is in fact first order approximations of 
the real displacement. This approximation is equivalent to a first 
order Taylor expansion using a change of design variables, i.e. 
after using intermediate reciprocal variables.
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VIRTUAL WORK

For indeterminate structures, the load redistribution is generally 
weak and the ci are nearly constant:

And the following expression is generally a very good expression 
of the displacement u:
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Berke’s expression is a first order approximation

▪ The approximation is exact in xi
0

▪ As ci
0 remains constant only along D(x0). It is also true for 

all points along the scaling line

▪ The derivatives of the approximations are exact in xi
0

89



Berke’s expression is a first order approximation

▪ The derivatives of the Berke’s approximation in x0:

▪ If one remembers the definition of the mutual energy 
coefficients

▪ It comes
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Berke’s expression is a first order approximation

▪ The true derivative of the displacement function with respect to 
xi can be calculated as follows

▪ It comes
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Berke’s expression is a first order approximation

▪ Since

▪ We have

▪ In point x°, 

▪ Which is exactly the same expression as the one obtained by 
deriving the Berke’s criterion
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Berke’s expression is a first order approximation

Properties of Berke’s criteria

▪ 1/

▪ 2/

▪ 3/

▪ u(x) is a first order approximation on the scaling line i.e. it gives 
exact values of the displacements on D(x0) as well as its first 
derivatives.
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OPTIMALITY CRITERIA 
FOR A SINGLE DISPLACEMENT 

CONSTRAINT
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Single displacement constraint

Let's come back to the minimum weight design problem. One 
considers the problem with a single displacement constraint:

Virtual loading case (unit load) in the direction of the 
displacement u

Decomposition in the contributions of each element:

– ci constant for a statically determinate structure.
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Single displacement constraint

Explicit problem:

Let’s introduce a Lagrange multiplier  and shape the Lagrange 
function

Stationary conditions
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Single displacement constraint

If ci is positive: OK!

If ci is less or equal to zero: → passive variables

To identify the Lagrange variable , one substitutes the xi by its 
value into the constraint that displacement an equality 
constraint:

Let’s define
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Single displacement constraint

Let’s identify the Lagrange multiplier :

So it comes

98



Single displacement constraint

Physical meaning of the optimality criteria

– Strain energy

– Virtual strain energy

Let's define the virtual strain energy of bar ‘i’ 

The energy density of bar ‘i’ is the energy of bar ‘i’ divided by 
the weight of this bar
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Single displacement constraint

Physical meaning of the optimality criteria

It comes

The virtual strain energy density per unit weight is the same in 
each element.
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Single displacement constraint

Statically determinate case: one structural analysis to reach the 
optimum

Statically indeterminate case ci is not constant: several iterations 
are necessary 

101



Single displacement constraint

Statically determinate case: one structural analysis and reach 
the optimum

Statically indeterminate case ci is not constant, one has to use 
an iterative scheme:

– Active variables ci>0

– Passive variables ci<0

Fast convergence to the optimum independently of the number 
of design variables.
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Two bar truss example

Minimum weight design subject to a horizontal displacement 
constraint

The virtual work theorem

Weight of the truss
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Two bar truss example

The optimization problem

The Langrange function

Optimality conditions
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Two bar truss example

The solution to these equations gives the value of the design 
variables in terms of the Lagrange multipliers :

The Lagrange multiplier is determined from the equation of the 
constraint

The optimal variables
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Two bar truss example

Minimum weight design subject to a vertical displacement 
constraint

The virtual work theorem

Weight of the truss
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Two bar truss example

The optimization problem

The Langrange function

Optimality conditions
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Two bar truss example

This means that the variables x1 and x2 can be as small as we 
want while satisfying the constraint on the displacement 
constraint on v. It is the minimum gauge on x2 which 
determines the optimum
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Single displacement constraint

▪ It is easy to add the minimum size constraint

▪ Selection of passive and active elements ➔ An element is 

passive if

▪ It is easy to add stress constraints in addition to the flexibility 
restriction

▪ Stress constraints are transformed into lower bound (side 
constraints) using the FSD approach

▪ An element is passive if
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Single displacement constraint

▪ For isostatic structures,

▪ Solution exact in one structural (Finite Element) analysis

▪ Redesign criteria must may be applied iteratively when the 
active / passive design variable set has to be selected when 
restrictions are imposed on the minimum size or by stress 
constraints (FSD)

▪ For hyperstatic structures 

▪ Ci’s are not constant because of the load redistribution

▪ Redesign criteria must be applied iteratively.

▪ Fast convergence.

▪ Generally non convergence problems are related to the 
stress constraints which are not accounting (approximated) 
accurately
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OPTIMALITY CRITERIA :
MULTIPLE DISPLACEMENT 
AND STRESS CONSTRAINTS
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Multiple displacement and stress constraints

▪ Combination of the two previous O.C.

▪ Displacement constraints

▪ Stress constraints
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Multiple displacement and stress constraints

▪ Displacement constraints (assumed to be active)

▪ ➔ m virtual load cases (unit load)

▪ Explicit approximation using virtual work 

▪ Stress constraints accounted through minimum size restrictions
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Multiple displacement and stress constraints

▪ Combination of the two previous O.C.

▪ Stress constraints

▪ Displacement constraints

▪ Set of active constraints is assumed to be known

▪ ň active design variables

▪ m active displacement constraints

▪ Passive design variables: side constraints or determined by the 
stress constraints
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Multiple displacement and stress constraints

▪ Active variables ➔ optimality conditions w.r.t. displacement 

constraints (assumed to be active)

▪ Lagrange function

▪ ➔ m Lagrange multipliers j

▪ Explicit approximation using virtual work 
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Multiple displacement and stress constraints

Stationary conditions

After some algebra, the stationary conditions can be cast under 
the following form

If cij>0
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Multiple displacement and stress constraints

▪ After some algebra, the stationary conditions can be rewritten 
under the following form

▪ With the virtual (mutual) strain energy densities

▪ In optimized structure, we have in each element the same 
combined virtual energy density, equal to unity 
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Multiple displacement and stress constraints

For statically determinate case: OC are exact (because xi and cij

are constant)

➔ optimum in one analysis

For statically indeterminate case: OC are approximate

➔ Iterative use of the redesign formulae

➔ Active variables

➔ Passive variables
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Multiple displacement and stress constraints

▪ Lagrange multipliers j????

▪ Such that the displacement constraints are satisfied as 
equality

▪ Closed form solution only if m=1

▪ Otherwise numerical schemes (see details in the latter)

▪ Envelop method (intuitive extension from case m=1)

▪ Newton Raphson applied to solve the set of nonlinear 
equations
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Multiple displacement and stress constraints
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Envelop method (Gellatly & Berke, 1971)

▪ Intuitive method, simple use, close to FSD

▪ Each displacement constraint is first considered alone and 
independently.

▪ For constraint j only

▪ and

▪ Then, one takes the maximum size for all displacement 
constraints (envelop)
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Envelop method (Gellatly & Berke, 1971)

▪ Remark : number of active variables

▪ ň= total number of active variables

▪ ňj = number of active variables for the jth constraint if it 
was the only critical one

▪ xi is an active variable for the jth constraint if

▪ cij> 0

▪ xi > xi  or FSD 

▪ xi given by the jth constraint in the update formula
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Envelop method (Gellatly & Berke, 1971)

▪ Formula must be repeated 2 or 3 times before stabilizing the 
sets of active design variables for each constraint

▪ The approach produces satisfactory results if the number of 
constraints is not too large

▪ Advantages

▪ Easy implementation

▪ No numerical difficulties
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Newton-Raphson iteration (Taig & Kerr, 1973)

▪ Solve the system of nonlinear equations using a Newton-
Raphson method

▪ First set of equations enables to eliminate the primal variables in 
terms of the Lagrange multipliers. Newton Raphson is thus used 
to solve the system
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Newton-Raphson iteration (Taig & Kerr, 1973)

Iteration scheme on Lagrange multipliers  only

Then new set of Lagrange multipliers are given by

Iteration scheme on Lagrange multipliers 

125



Newton-Raphson iteration (Taig & Kerr, 1973)

Iteration scheme on Lagrange multipliers  only

Gradient matrix H is given by
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Newton-Raphson iteration (Taig & Kerr, 1973)

▪ Difficulties

▪ Select appropriate initial (0)

▪ Find the correct set of active / passive design variables

▪ Identify the set of estimated active behaviour constraints 
(i.e. nonzero j’s)

▪ H might become singular at some stage of the process

▪ Solution: dual methods

▪ H is indeed the Hessian matrix of the dual function

▪ Iteration is the quadratic programming ascent direction in 
dual space
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Ten-bar-truss example

▪ The stress-ratioïng itself 
tends to increase the 
design variable with the 
smallest stress limit

▪ Example: stress limit = 
25000psi except in 
member 8 with a variable 
limit from 25000 to 70000 
psi
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Stress and displacement constraints
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