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INTRODUCTION & MOTIVATION
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Introduction

Structural optimization applied to sizing (weight minimization) 
problem

– Finite element model

– Design variables are the transverse sizes of the structural 
members (Fixed geometry and material properties)

– Design restrictions
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Introduction

Design constraints gj(x)<0

– Implicit functions

– Non linear functions

– One constraint evaluation requires a complete FE analysis

Side constraints: simple and explicit

– Fabrication / technological / physical constraints

– Treated separately in most methods

Iterative process ➔ HIGH COST
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INTRODUCTION

Optimality criteria techniques (OC)

– Highly specific

– Intuitive techniques, simple

– Convergence to a design that is not necessarily optimal (KKT 
conditions)

– Difficulties in identifying the set of active constraints

– Convergence instabilities

– Small number of reanalyses, independent of the number of 
design variables

Résumé

– Low cost

– But uncertainty convergence
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INTRODUCTION

Pure Mathematical Programming methods

– Very general

– Rigorous methods, quite elaborated

– Convergence to a local minimum

– Stable and monotonic convergence

– Large number of reanalyses, growing with the number of 
design variables

Résumé

– Rigorous framework & guaranteed convergence

– High cost (Growing with the size of the problem)
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BERKE’S APPROXIMATION
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BERKE’S APPROXIMATION

Theorem of virtual work,

Applying a virtual load vector (unit load vector) in the direction 
of under the displacement u:

The Principle of Virtual Work yiels

With 
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BERKE’S APPROXIMATION

For truss and plate design variables, the stiffness matrix takes 
the interesting form:

– Truss structures xe =Ae

– Plate structures xe =te

One can decompose the contribution of each element:
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BERKE’S APPROXIMATION

▪ The flexibility coefficients are constant for statically determinate 
structures

▪ For other structures, one can also assume a moderate 
redistribution of the internal loads around the current design 
point and has also constant value.

▪ Considering that the coefficients ce are constant, Berke's
criterion provides an explicit expression of the displacement u in 
terms of the design variables
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BERKE’S APPROXIMATION
ARE FIRST ORDER APPROXIMATIONS
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A first order explicit approximation of displacement

▪ The Berke’s expansion provide a first order explicit 
approximation of the displacement around x0

▪ In general (indeterminate structures) the ci
0 are not 

constant 

▪ The expression is exact for statically determinate structures, 
but for statically indeterminate structures, it is only exact in 
the current point x0

▪ The Berke’s expression is an approximation of the displacement 
u around the current design point x0 in terms of the design 
variables. 12



A first order explicit approximation of displacement

▪ The value of the approximation is exact in xi
0

▪ As ci
0 remains constant only along D(x0). It is also true for 

all points along the scaling line

▪ The derivatives of the approximations are exact in xi
0
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APPROXIMATION IS A FIRST 
ORDER TAYLOR EXPANSION 

IN THE RECIPROCAL 
VARIABLE SPACE
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Constraint linearization in reciprocal space

▪ Berke’s approximation of the displacement u. 

▪ Suggest to use the reciprocal variables

▪ The Berke’s approximation can take the simple form
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Constraint linearization in reciprocal space

▪ We now show that the Berke’s approximation is in fact the first 
order Taylor expansion of the displacement in the reciprocal 
space.

▪ In order to prove that one has to show that

▪ Cij are the derivative of u with respect to zi:

▪ The constant terms in ‘0’ cancel each other
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▪ It comes

▪ Finally

Constraint linearization in reciprocal space
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Constraint linearization in reciprocal space

▪ Let’s show that the virtual energy densities ci  are the first 
derivatives (gradients) of the constraints with respect to the 
reciprocal variables zi=1/xi that is

▪ For the approximation obviously, we have :
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Constraint linearization in reciprocal space

▪ Derivative of the (real) displacement with respect to the 
reciprocal design variable zi = 1/xi. It is clear that

▪ Since 

▪ It comes
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Constraint linearization in reciprocal space

We have to prove

This is performed by writing the expression of u(z0)

It comes that the approximation writes
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First order explicit approximation of the stress 
constraints

Previous interpretation of FSD and Berke’s approximation 
suggests to generalize the first order approximation approach 
and to build the same high-quality approximations for stress and 
displacement constraints.

For truss: stress constraints can be equivalent to relative 
displacements. But in general

Apply “virtual load case” tk

The first order generalized “Berke” approximation of the stress

21



First order explicit approximation of the stress 
constraints

Property:

First order approximation on the scaling line
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Constraint linearization in reciprocal space

Approximation concept approach:

– Linearization of the stress constraints

– First order explicit approximation

Conventional OC: stress ratio formula

– Fully stressed design (FSD) philosophy

– Zero order approximation
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Constraint linearization in reciprocal space
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Stress ratioing
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Stress ratioing
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Three-bar truss



Stress ratioing

Direct design variables space
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Stress ratioing
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Reciprocal design variables space



Stress ratioing
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Stress ratioing

Three-bar truss:
First order 

approximation of stress 
constraints
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RELATIONS BETWEEN OC AND MP

Generalized OC = MP linearization method

Approximation concept approach

Constraint gradients
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Generalized OC = Linearization method

GOC : sequence of explicit subproblems where real constraints 
are approximated by

– cij = virtual energy densities

Approximation: sequence of linearized problems with

– cij = derivatives of the response functions with respect to the 
reciprocal variables
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Generalized OC = Linearization method

Unified approach:

– Sequence of explicit (separable) subproblems obtained by 
linearizing the behavior constraints with respect to the 
reciprocal variables

– Independence wrt the number of design variables!

Solution of the explicit subproblems

– Dual solution scheme: generalization of conventional OC 
techniques (GOC)

– Primal solution scheme: mixed method: gradual transition 
between pure MP and OC approaches

Later: linearizing any 
behavior constraints with 
respect to the reciprocal 

variables!
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CONCLUSION
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CONCLUSION

▪ Berke’s approximation has been successful in providing high 
quality explicit approximations of displacement constraints

▪ Optimality Criteria can reduce substantially the number of 
function evaluation in solving costly problems in truss sizing

▪ They are used in building fast solution algorithms

▪ Berke’s approximations are first order Taylor expansion of the 
displacement in terms of the reciprocal design variables

▪ How can we extend the principle to other engineering design 
problems?

▪ Answer: Structural Approximations
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SEQUENTIAL CONVEX 
PROGRAMMING APPROACH

Direct solution of the original 

optimisation  problem which is 

generally non-linear, implicit

in the design variables

is replaced by a sequence of  optimisation  sub-problems

by using approximations of the responses and using powerful

mathematical programming algorithms
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SEQUENTIAL CONVEX PROGRAMMING APPROACH

▪ Two basic concepts:

▪ Structural approximations replace the implicit problem by an 

explicit optimisation sub-problem using convex, separable, 

conservative approximations; e.g. CONLIN, MMA

▪ Solution of the convex sub-problems: efficient solution using dual 

methods algorithms or SQP method.

▪ Advantages of SCP:

▪ Optimised design reached in a reduced number of iterations: 10 to 

20 F.E. analyses

▪ Efficiency, robustness, generality, and flexibility, small computation 

time

▪ Large scale problems in terms of number of design constraints and 
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