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LAY-OUT

Optimality Criteria

– Fully stressed design

– Optimality criteria with one displacement constraint

Interpretation of OC as first order approximations

FSD zero order approximation

Berke’s approximation = 1st order approximation
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LAY-OUT

Optimality Criteria

– Optimality criteria with multiple displacement and stress 
constraints

Generalized optimality criteria

Dual maximization to solve OC criteria with multiple 
constraints

Unified approach to structural optimization
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OPTIMALITY CRITERIA :
STRESS AND DISPLACEMENT 

CONSTRAINTS
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Stress and displacement constraints

Combination of the two previous O.C.

– Stress constraints

– Displacement constraints

Set of active constraints is assumed to be known

– ň active design variables

– m active displacement constraints

Passive design variables: side constraints or determined by the 
stress constraints
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Stress and displacement constraints

Active design variables: ruled by displacement constraints

– m constraints 

 ➔ m virtual load cases qj

 ➔ m Lagrange multipliers j

– Explicit approximation using virtual work 

Lagrange function
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Stress and displacement constraints

Stationary conditions

After some algebra, the stationary conditions can be casted 
under the following form

If cij>0
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Stress and displacement constraints

For statically determinate case: OC are exact (because xi and cij

are constant)

➔ optimum in one analysis

For statically indeterminate case: OC are approximate

➔Iterative use of the redesign formulae

➔ Active variables

➔ Passive variables
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Stress and displacement constraints

Lagrange multipliers j????

– Such that the active displacement constraints are satisfied as 
equality

– Closed form solution only if m=1

– Otherwise numerical schemes

Envelop method (intuitive extension from case m=1)

Intuitive formula

Newton Raphson applied to solve the set of nonlinear 
equations
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Newton-Raphson iteration (Taig & Kerr, 1973)

Solve the system of nonlinear equations using a Newton-
Raphson method

First set of equations enables to eliminate the primal variables in 
terms of the Lagrange multipliers. Newton Raphson is thus used 
to solve the system
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Newton-Raphson iteration (Taig & Kerr, 1973)

Iteration scheme on Lagrange multipliers  only

Gradient matrix H is given by
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Newton-Raphson iteration (Taig & Kerr, 1973)

Difficulties

– Select an appropriate initial dual set (0)

– Find correct set of active / passive design variables

– Identify the set of estimated active behavior constraints (i.e. 
nonzero j’s)

– H might become singular at some stage of the process

Solution: dual methods ➔ Generalized Optimality Criteria

– H is indeed the Hessian matrix of the dual function

Dual maximization: determination of the Lagrange variable 
values

Set of active constraints = Non zero optimum values of the 
Lagrange multipliers
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Ten-bar-truss example

The stress-ratioïng itself 
tends to increase the 
design variable with the 
smallest stress limit

Example: stress limit = 
25000psi except in 
member 8 with a variable 
limit from 25000 to 70000 
psi
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Stress and displacement constraints



GENERALIZED OPTIMALITY CRITERIA
➔

DUAL SOLUTION OF SUBPROBLEMS
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Optimality Criteria

Explicit optimization problem:

Expression of the displacement constraints using the virtual 
force method

Cij are constant in statically determinate structures
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Optimality Criteria

Explicit optimality conditions of the minimum = KKT conditions

That is

➔ Analytical expression of the design variables in terms of the 

Lagrange variables (primal dual relationships)
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Optimality Criteria

Non negativity constraints of the Lagrange multipliers

– Active constraints

– Passive constraints

Optimal j* ➔ optimal xi*

Lagrange multipliers = new variables

= dual variables
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Generalized Optimality Criteria

DUAL MAXIMIZATION

Identifying the optimal value of the Lagrange multipliers j by 
solving the dual problem

With the dual function

Primal dual relationships
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Dual methods

Primal problem

Lagrange function of the problem

KKT conditions
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Dual methods

Primal dual relations

Because of the separabilty: solution of n 1D problems

Gives the explicit relation of primal dual variables
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Dual methods

Dual function

Dual problem
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Dual methods

PROPERTIES OF DUAL FUNCTION: Derivative of dual function

Optimality conditions of the dual function
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Dual methods

Algorithms for maximizing the dual function based on the 
Newton’s methods = Rigorous Update procedure of the 
Lagrange Multipliers

Ascent direction

Hessian of the dual function

➔ Discontinuous because of the modification of ñ, the set of active 
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Dual methods

Second order discontinuous planes:
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Generalized Optimality Criteria

Dual problems:

– Explicit

– Quasi unconstrained 

– Gradient directly available

Dual algorithms

– Low computational cost (like OC techniques)

– Reliable (mathematical basis)

– Can handle large numbers of inequality constraints

– Automatically find the active set of constraints and the 
corresponding active passive design variables

Easy to solve by standard methods
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Dual methods

Two-bar truss
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Dual methods

GOC relations

KKT conditions ➔ primal dual relations

Discontinuity planes
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Dual methods

Explicit dual function for 2-bar truss
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Dual methods
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Dual methods
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Dual methods

Line search
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Dual methods

10-bar truss – Conventional and
Generalized OC
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CONCLUSION
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CONCLUSION

DUAL

Generalized of OC

Computationally economical but 
convergence instability

Discrete design variable possible

Reliable computer 
implementation

Dual bound = monitoring

PRIMAL

Mixed method (OC/PM)

Control over convergence at a 
higher cost

Other objective functions non 
separable explicit functions

Sophisticated algorithms

Sequence of explicit subproblems

– First Order Approximations

Efficient solution of optimization problem

Primal / dual solution schemes
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