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INTRODUCTION

We want to solve structural optimization problems

Solution algorithms & optimality conditions (KKT) require:

– The values of the objective and constraint functions

– The derivatives of the functions

➔ SENSITIVITY ANALYSIS
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INTRODUCTION

To compute the sensitivities several approaches are possible:

– Finite differences

– Differentiate the governing PDE (state) equations and then 
discretization ➔ Continuum variational derivatives

– Discretization of the governing PDE equations and then 
differentiation ➔ Discrete sensitivity analysis

Analytic approach

Semi Analytic approach

Automatic differentiation of computer code
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FINITE DIFFERENCE APPROACH
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FINITE DIFFERENCE SENSITIVITY

The simplest approach to compute sensitivities is the first order 
forward finite difference approximation

With the perturbation of the variable xi: 

An alternative scheme is the second order central finite 
difference approximation
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FINITE DIFFERENCIE SENSITIVITY

First order (forward and central) difference schemes are the 
most used in structural and multidisciplinary optimization 
because of the higher cost associated to higher-order schemes.

Cost of finite difference schemes

– Forward difference: n+1 (n=number of design variables)

– Central difference: 2n+1

The key to finite difference approximation scheme is the 
selection of the perturbation step Dxi

There are two sources of errors:

– The truncation error results from the neglected terms in the 
Taylor expansion

– The condition error is the difference between the numerical 
evaluation of the function and its exact value
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FINITE DIFFERENCIE SENSITIVITY

Truncation error can be evaluated by writing the Taylor 
expansion of the function g:

It comes that the truncation error for the forward difference 
scheme is:

Similarly for the central finite difference scheme, one gets: 
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FINITE DIFFERENCIE SENSITIVITY

The condition error results from the numerical error in the 
evaluation of the function (compared to its exact value).

One contribution of the condition error is the round-off error in 
calculating the original and the perturbated values of g.

– The round-off error is small except if Dx is very small. 

– However when the value of g is computed by lengthy and/or 
ill-conditioned numerical process, the round-off error can 
become substantial.

– The condition error can also grow if calculated by an 
iterative process that is terminated prematurely.
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FINITE DIFFERENCIE SENSITIVITY

If we have a bound eg on the absolute error in the computation 
of the function g, we can estimate the condition error.

A very conservative bound on the condition error is:

Dilemma of the selection of the finite difference of the step-size:

– The truncation error increases with Dx

– The condition error growths with 1/Dx

Reduction of Dx reduces the truncation error while increasing 
the condition error and vice-versa! 
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FINITE DIFFERENCIE SENSITIVITY

The total error is the sum of the condition and truncation errors

– Where |sb| is a bound upon the second order derivatives in 
the interval [x,x+Dx]

If we know the values of |sb| and eg , then we can compute the 
optimum step-size that minimizes the total error:
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FINITE DIFFERENCIE SENSITIVITY

The figure shows a typical  
dependence of the finite 
difference derivative on the 
step-size.

For small step-sizes, the 
round-off error is random in 
nature

For large step-sizes, the error 
varies smoothly. The central 
difference scheme gives a 
small advantage by producing 
accurate derivatives in a 
slightly larger range of the 
step-size.Effect of step size on derivative by 

Haftka and Adelman (1993)
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FINITE DIFFERENCE FOR 
ITERATIVELY SOLVED 

PROBLEMS
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FINITE DIFFERENCE FOR ITERATIVELY SOLVED 
PROBLEMS

Condition errors can become important when iterative methods 
are used to evaluate the response functions. 

Let us consider:

The iterative solution process starts from an initial guess u and 
terminates when the iterant uD is within a given tolerance e of 
the exact u.

Using a forward difference scheme, we perturb one variable by 
Dx(i) and solve again the problem
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FINITE DIFFERENCE FOR ITERATIVELY SOLVED 
PROBLEMS

The iterative solution yields an approximation       then 
derivatives du/dx is approximated by

To start the iterative process for obtaining uD, two initial 
guesses are obvious:

– Start from the same guess as for the non perturbated 
problem. There is a good chance the condition errors will be 
the same and cancels if the iterative process is monotonic

– Start from the solution of the iterative ũ. The initial guess is 
very good and the convergence may be fast, but the 
condition error is likely to have changed and they do not 
cancel
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FINITE DIFFERENCE FOR ITERATIVELY SOLVED 
PROBLEMS

To circumvent the problem, Haftka (1985) suggests a strategy 
allowing to start the iteration for uD from ũ without excessive 
condition errors.

Let’s pretend that ũ is the exact solution instead of being the 
approximation solution. ũ is the exact solution of the (slightly) 
modified problem:

We find the derivative of du/dx by obtaining uD as the solution:

Because ũ is the exact solution for Dx=0, the iterative process 
reflects only the influence of Dx and we get a good 
approximation for making the finite differences.
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SENSITIVITY OF DISCRETE 
SYSTEMS
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STATIC ANALYSIS

Study of the derivatives of the structure under linear static 
analysis when discretized by finite elements.

The study is carried out for a single load case, but it can be 
easily extended to multiple load cases.

Equilibrium equation of the discretized structure:

– q generalized displacement of the structure 

– K stiffness matrix of the structure discretized into F.E.

– g generalized load vector consistent with the F.E. 
discretization
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STATIC ANALYSIS

Let x be the vector of design variables in number n.

The differentiation of the equilibrium equation yields the 
sensitivity of the generalized displacements:

The right-hand side term is called pseudo load vector

Physical interpretation of the pseudo load (Irons): load that is 
necessary to re-establish the equilibrium when perturbating the 
design. 20



STATIC ANALYSIS

Differentiating one more time, one gets the second order 
derivatives of the generalized displacements:

Computational effort:

– The sensitivity of the generalized displacements requires the 
solution of n additional load cases for the first order 
sensitivities and n(n+1)/2 for the second order derivatives.
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STATIC ANALYSIS

Derivative of a response function R:

Deriving the equation of the response function

With
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STATIC ANALYSIS

Direct approach: consists in evaluating the derivatives of the 
generalized displacement first 

and then substituting into the expression of the derivative of the 
constraint

The direct approach requires solving ‘n’ additional load cases 
(pseudo loads)
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STATIC ANALYSIS

The virtual load approach is based on the observation that the 
problem is self adjoin so that K-1 = K-T so that one can evaluate 
the matrix product first

This is equivalent to solving the adjoin state equation:

And then substitute into the expression of the derivative of the 
constraint

Computational cost: The adjoin method requires one additional 
load case per constraint
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STATIC ANALYSIS

For the second derivatives of the response function R, one gets:

The matrix R collects the partial second order derivatives of the 
response with respect to the generalized displacements q. 

The direct approach requires computing the first and the second 
order derivatives of the generalized displacements, that is 
solving n + n(n+1)/2 additional load cases
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STATIC ANALYSIS

Haftka (1982) showed that it is often more economical to solve 
the ‘n’ pseudo loads and the ‘m’ virtual loads.

It comes
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ANALYTICAL APPROACH

A central issue is the calculation of the derivatives of the 
stiffness matrix and of the load vector.

In some cases the structure of the stiffness matrix makes it 
easy to have the sensitivity of the matrix with respect to the 
design variable

For thin walled structures (bars, membranes):

It comes
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ANALYTICAL APPROACH

For bending elements, one can write:

It comes

In topology optimization using SIMP model:

The stiffness matrix

And its derivatives
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SEMI ANALYTICAL APPROACH

However in many cases, it is impossible to exhibit a closed form 
structure in terms of the design variables, thus one generally 
resorts to a finite difference to evaluate the derivatives of the 
stiffness matrix and of the load vectors.

For the second derivatives, one has also
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SENSITIVITY OF DISPLACEMENTS

Obviously for displacement constraints, one has the following 
simple form:

With

The vector b being constant, its derivative is zero and the 
derivative of the displacement constraint is:

The second order derivatives writes also
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SENSITIVITY OF DISPLACEMENTS

The sensitivity writes

It can be evaluated using the direct approach and computing 
the derivatives of the generalized displacements 

or by using the adjoin approach and solving for the virtual load
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SENSITIVITY OF COMPLIANCE

The compliance is defined as the work of the applied load.

It is equal to the twice the deformation energy

The derivative of the compliance constraint gives:

Introducing the value of the derivatives of the generalized 
displacements:
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SENSITIVITY OF COMPLIANCE

The expression of the sensitivity of the compliance writes

Generally the load vector derivative is zero (case of no body 
load), it comes:

In fact, we could have obtained this result also by using the 
virtual load approach:
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SENSITIVITY OF STRESSES

The stress in the finite element can be written in a vector form

where T is the stress matrix of the element.

The component k of the stresses writes

where tTk is the row k of the stress matrix T .

The sensitivity of a component k of the stress with respect to a 
design variable x is given by:
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SENSITIVITY OF STRESSES

Introduction the sensitivity the displacement, the sensitivity 
writes

It is clear that in order to evaluate this expression, one has to
compute either the pseudo loads

Or the virtual load case
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SENSITIVITY OF STRESSES

For an equivalent stress criterion, one can compute at first the 
derivatives of each stress component and then apply the chain 
rule for the derivative. But when the criterion is quadratic like 
the von Mises equivalent stress, it is more economical to use 
another approach.

For plane problems, the stress in the finite element can be 
written in a vector form

On can write the equivalent von Mises stress as a follow:

as a quadratic form using matrix V
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SENSITIVITY OF STRESSES

The equivalent von Mises stress writes as a follow:

with

Differentiating the von Mises expression gives
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SENSITIVITY OF STRESSES

The sensitivity of the von Mises stress can be written as:

and it comes that this can be evaluated also by solving pseudo 
load cases for every design variables or by using a virtual load 
approach. 

The adjoin loads are for this problem of the form
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SENSITIVITY OF EIGENVALUES 
AND EIGENVECTORS

39



SENSITIVITY OF EIGENVALUE PROBLEMS

Eigenvalue problem

– K stiffness matrix, M mass matrix

– q the eigenmode vector

– And l the eigenfrequency

The magnitude of the modes is arbitrary, so they are normalized 
according to a given matrix W (generally the mass matrix M)

At first let’s consider the simplified approach: we assume that all 
eigenvalues are distinct and ordered from the smallest to the 
largest:
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SENSITIVITY OF EIGENVALUE PROBLEMS

Let’s differentiate the eigenvalue equation

Differentiating the normalization equation gives
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SENSITIVITY OF EIGENVALUE PROBLEMS

To obtain the derivatives of the eigenvalue l(k), one has to
premultiply the first equation by the eigenmode q(k)

Since q(k) is an eigenmode

And one gets
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SENSITIVITY OF EIGENVALUE PROBLEMS

We finally obtain the final expression of the sensitivity of the 
eigen values:

With the scaling factor

Sensitivity does not need any additional solution. Low CPU cost 
to obtain the eigenfrequency sensitivities
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SENSITIVITY OF EIGENVALUE PROBLEMS

Calculating the sensitivity of the eigenvectors is more 
complicated. 

If we want to determine the derivatives of the eigenvectors, we 
have to solve simultaneously the two equations because the 
matrix                 is singular, and it is impossible to invert it.

The system of equations writes under matrix form:
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SENSITIVITY OF EIGENVALUE PROBLEMS

To solve this system, there are several methods. The most 
popular one is the temporary fixation strategy proposed by 
Nelson (1976).

Expand the derivative of the eigenmode in the basis of 
eigenvectors:

– Vk is orthogonal to the eigenmode q(k) ;
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SENSITIVITY OF EIGENVALUE PROBLEMS

Vk is the solution of a reduced version of the eigenvalue 
equation obtained by deleting the kth row and column from 

and by setting to zero the kth component of Vk

Vk has been made orthogonal to q(k) in the norm of matrix M
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SENSITIVITY OF EIGENVALUE PROBLEMS

The multiplier ckk is evaluated by substituting into the derivative 
of the normalization equation with respect to the mass matrix 
M=W

As the modes are orthogonal, it comes
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SENSITIVITY OF EIGENVALUE PROBLEMS

Remark 1: In the framework of the theory of small 
perturbations, the modifications of the eigen frequencies and of 
the mode shapes are decoupled.

Remark 2: in case of multiple eigenfrequencies, the 
eigenfrequencies are non smooth and the derivative does not 
exist anymore (subdifferential).

Calculating the derivatives requires a projection into the basis of 
eigenvectors of the multiple eigenfrequencies.
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SENSITIVITY OF STABILITY PROBLEMS

Stability equation

The matrix S is the stability matrix resulting from the 
geometrical and prestressing terms

Let’s differentiate the stability equation

49



SENSITIVITY OF STABILITY PROBLEMS

Derivative of the buckling load factor

The major issue it to calculate the sensitivity of the stability 
matrix S !!!

Approximation in SAMCEF
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