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— Case study of the mass minimization of differential casing 3



INTRODUCTION AND MOTIVATION



SIZING, SHAPE, TOPOLOGY OPTIMIZATION

o Jog, Haber and Bendsoe (1996) have
defined 3 types of structural
optimization problems:

a/ Sizing
— Cross section, thickness, Young
modulus...

b/ Shape

— Parameters of geometrical features:

Lengths, angles, control point
positions...

c/ Topology
— Presence or absence of holes,

— Connectivity of members and
joints...
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SHAPE REPRESENTATIONS



SHAPE DESCRIPTION

o One can distinguish different approaches to represent shapes:

o Lagrangian approach
— Parametric boundary description: Explicit description
n Define the boundaries using explicit parametric curves
n Boundaries define a contour
o Component domain is inside the contour

o Eulerian approach: Implicit description
— Level Set Method
— Indicator function: Material description
— Define the domain on a fixed grid



GEOMETRICAL DESCRIPTION
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BOUNDARY DESCRIPTION

o Boundary description
— Decompose complex shapes into geometrical features

— Geometrical features can include parameters that can
adjusted

— For instance, plane cubic lines can be written as:

P Fig.1
p(u) = agu® + axu® + aju + ag 1 ¢

13
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p(u) = [v* w* u 1] Zj = UA %w\
a0 P, P,

o Where u is the parametric coordinate in [0,1], a; [a,;, a,]
are the algebraic coefficients of the curve 9




BOUNDARY DESCRIPTION

— Similarly a cubic spatial parametric surface can be
represented as

3

p(u) = Z Qij u' v’
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o Where u, v are the parametric coordinates and a; are the
algebraic coefficients of the surface.
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BOUNDARY DESCRIPTION

o Parametric curves or pieces of
surfaces can be linked together into

usual geometrical features with (P~ ) /N
predefined shapes such as circles, \~./~ ) _ j
ellipses.

o One can create a library of usual
elements by interconnecting basic
parametric geometric entities and
defining the type of the geometric
feature.

o Many different parametric features
can then be combined to form a
complex component description

11



BOUNDARY DESCRIPTION

o Shape optimization can be formulated using parametric
geometric parameters defining its constituting shape
description.

o The design variables are thus the numerical values of the
geometric parameters.
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LAGRANGIAN APPROACH:
DOMAIN INDICATOR FUNCTION

o Several approaches to determine the

indicator function

o Material density function
— Binary

— Continuous approximation

Q
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1

o Porous cellular material =

Homogenization 0
o Interpolation function: SIMP, RAMP...
o Implicit boundary description
— Level set description
o Hamilton-Jacobi function
o Parametric functions and math
programming
o Nodal values of Level Set
— Phase Field Description




MATERIAL DISTRIBUTION FORMULATION

O

Abandon CAD model description
based on boundary description

Optimal topology is given by an
optimal material distribution problem

Search for the indicator function of
the domain occupied by the material

The physical properties write

The problem is intrinsically a binary
0-1 problem =» solution is extremely
difficult to solve

() 1 ifx € Qm
X:
X 0 ifx € Q\Qm

Eijri(x) = x(x) Ef?jkl
p(x) = x(x) p’

x €10,1}



LEVEL SET DESCRIPTION

0 LEVEL SET METHOD [Sethian, 1999]

— Alternative description to parametric description of curves
— Implicit representation of the geometry A
— Add the dimensionality by one

o The parametric description of the curve
I'={(x,p) € D xR™:¢(x,p) =0}

o Is replaced an implicit description

o(x,p) >0, & xe€Q (material)
o(x,p) <0, < xe D\Q (void)
o(x,p) =0, & x €I (interface).

o There are many ways to define the level set corresponding to known shape. For
instance the signed distance function

d(x) = min fx —xp|, vxeD 5



GEOMETRICAL DESCRIPTION USING LEVEL SETS

Level Set

o Advantages
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GEOMETRICAL DESCRIPTION USING LEVEL SETS

o Level Set of a square hole

o Combination of two holes

OOfelie Graph

Level Set

Iﬂ.“l

0.663
0.495

0.327

-0.00926
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GEOMETRICAL DESCRIPTION USING LEVEL SETS

o In XFEM framework: discretization of the level set,
— Each node has a Level Set dof
— Interpolation using classical shape functions

T(r,s) =Y Ni(x) T,
i=1

— Material assigned to a part of the Level Set (positive or
negative)

18



CONSTRUCTIVE GEOMETRY USING LEVEL SETS

o Constructive geometry approach
— Elaborate complex geometries using Level Sets:
o Primitive shapes with dimension parameters

OOfelje with Xfem

Level Set

U= U(x,s)

o Linear combinations of basic functions
o Ha..m

LD(T’ 5) - Z Si \(X) e

=1

— Library of graphic primitives and features
o Lines, circles, ellipses, rectangles, triangles
o NURBS
o Combine the basic levels sets using logic and Boolean
operations =» constructive geometry y



LEVEL SET BASED CONSTRUCTION SOLID GEOMETRY

o To represent complex geometries with Level Set

— Introduction of Constructive Solid Geometry (CSG) based on
Level Set [Chen et al. 2007]

— CSG = build complex geometries by combining simple solid
object called primitives using Boolean operators

= Development of "Level Set geometrical modeler”

o Geometrical primitives are represented with Level Set
(analytical, geometrical, CAD based, predefined compound Level
Sets)

o Use Boolean operators on Level Set primitives

' . Un’ Difference°




LEVEL SET BASED CONSTRUCTION SOLID GEOMETRY

o Example of complex geometry with CSG Level Set

o Two cylinders
o One oblong hole

o One external oblong
surface

o 3 NURBS surfaces




GEOMETRICAL DESCRIPTION USING LEVEL SETS

o The Level Set geometry is organized as a tree

— Where :
o Each leaf is a basic level set
o Each node is an operator

— Each sub cell is classified after all cut as inside/outside or boundary

LsUnion

LsUnion LsUnion

TS

LsPlane LsPlane LsCyl  LsCyl LsCyl LsSphere 99



SHAPE OPTIMIZATION USING
PARAMETRIC BOUNDARY DESCRIPTION




PARAMETRIC BOUNDARY DESCRIPTION

0 Modification of external or inner

boundaries
o Key issue: definition of a ‘
consistent parametric CAD model
— Geometrical constraints ***** N ******
(tangency, linking of points) /
— Geometrical features: straight %'
lines, circles, NURBS, surfaces, -
etc. -
Zhang, Duysinx, Fleury (1993)
o Implementation issue: API to and . Design variables = a set of
from CAD systems (CATIA, Pro E .
etc.) Y ( ! ' independent CAD model

parameters
24
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a

A CAD MODEL WITH PARAMETERISATION

P & —

D1 D2

- il i 42,
~

Reqular curves and surfaces:
— Straight lines, arcs of circles, splines, NURBS
— Planes, spherical, spline and NURBS surfaces

Model Parameterisation:
Definition of the model with a set of independent parameters

25



SENSITIVITY ANALYSIS AND VELOCITY FIELD

o Position of a point after a perturbation
of the design variable d.

X(d; + dd;) = X(d;) + V; dd;

0X
ith'V,; =
W1 od,
o Derivative of a response in a given
point:
DR Z OR 0X,
00X 0d;
OR
= V,;, VR
ad,

o Conclusion: determine the velocity field
at first

26



VELOCITY FIELD PROBLEM
- | k

o Key issue: Velocity field § 'AV

o Practical calculation of
velocity field

— Boundary velocity field =
CAD model

— Inner field = Velocity law

o Inner field:
— Transfinite mapping
— Natural / mechanical approach
— Laplacian smoothing
— Relocation schemes

Duysinx, Zhang, Fleury (1993) 27



VELOCITY FIELD DETERMINATION:
THE MESH RELOCATION TECHNIQUE

Advantages:

On the boundaries:

The velocity field is uniquely determined by the parametric
equations of the contour curves and surfaces

U = ;Wi(s) d; Vi = [gi] = [W;(s)]

Inside of domain
The velocity field is determined with a node relocation technique
Link the perturbations of neighbouring nodes with stiffness:

D ki; (Velgy = Vilgy) = 0
i]

— low computation cost
— possible extension to volume structures
and shells




Example of velocity field determined by node
relocation

[ [ ]

— | T

Velocity field relative to a modification of the radius of the notch

29



Shape Optimisation of a Torque Arm

d

R5

R3
R4

R1 C )

R2

}
\
A
\J

42.

-
<«

\J

Statement of the design problem:

Minimise Weight

8 design parameters

s.t. Von Mises equivalent stress under 80000 N/mm?2
Geometry constraints (thickness of members > 1 cm)

30
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Shape Optimisation of Torque Arm

VALEUR * T.E 3 VALEUR * 1.E 3
45.67 71.21
41,11 64.1
36.54 56.98
31.97 49.85
27.4 42.73
22.84 g 35.61

||
. F me
18.27 ' . - 28,49

—113.7 21,37

— 2.13 —14.24

— 4.57 — 712

— 0 — \D

Iteration O Iteration 12

Von Mises stress : average values per finite element

32



Shape Optimisation of Torque Arm

VALEUR * 1.E 3

VALEUR * 1.E 3

63.57 5
57.22 77.16
50.86 68.50
44.5 60.02
38]4 51.44
P SRE -
31.70 = 42.87
A 7 o, 34,29
25.43 va 50 T ¢
i —25.72
—119.07
—17.15
—112.71
— 857
— 6.36
L o
— 0
Iteration O Iteration 12

Von Mises stress at Gauss Points

33



SHAPE OPTIMISATION AND F.E. ERROR
CONTROL

ad

Shape modifications due to optimisation process can lead to important
mesh distortions

The optimisation results are strongly dependent on the quality of the
analysis (especially the stresses)

ONE ALWAYS OPTIMISES THE MODEL
To have relevant and meaningful results
CONTROL THE ERROR LEVEL OF THE ANALYSIS

Integration of an error estimation procedure and of a mesh adaptation
tool into the optimisation loop

34



Shape Optimisation of Torque Arm
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Shape Optimisation of Torque Arm

Weight (kg)
0.750 + & .
o o with error control
0.650 -+ 5
" . without error control
O
0.550 \ \ 5
\\ \
\ @)
0.450 = ™~ o
AE‘ Q\
RAHAORAO— O
0.350 ] | |
) 2 4 £ g

[teration
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BOSS-Quattro

O O o o 0o o 0O

These Concepts have been implemented in a commercialised tool
BOSS-Quattro developed by SAMTECH in partnership with LTAS (Ulg)

Optimisation of parametric models

Open system

A design environment for multi-model / multidisciplinary problems
Object oriented code

Optimisation algorithms

Application manager (more than a task manager)

Model manager (update, perturbations, etc.)

37



Boss Quattro philosophy

h2|




Boss Quattro generic engines

1 {Responses

Gradient Optimization
Genetic Algorithms Monte Carlo

Design of Experiments
Response Surfaces

Predictors (RBF...) Updating
(what if study)

Kx- Mx




Sensitivity analysis in Boss Quattro

Sensitivity (derivative) of response
with respect to a design variable d

Sensitivities are either:
— Computed by finite-differences

— Computed semi-analytically and read
from SAMCEF, NASTRAN Sol200,
NEUTRAL, Excell...

Finite Difference scheme: OK!

TN

)
M A=

Semi analytical properties: requires
a first order mesh perturbation law:
mesh relocation technique

et




CAD-FEM coupling in shape otpimization




Boss Quattro + Think3 package

Aesthetic Character of a product

(descrbed by Termsin natural language
"sporty”, "aggressive", "dynamic”...)

Mapping of
Aegthetic Charader on
ohjedtively descrbable Properties

Aesthetic Properties as carrier of
Aesthetic Character

simulation of reflection line flow

!

Elementary Aesthetic Properties

Refiection lines given as geometic curve
to calculae curvature, inflection lines, ...

42



Boss Quattro + Think3 package

Simulated reflection lines on the CAx model of a car's side panel.

The designer modifies the reflection line A to (target line) B
which will be parallel to line C.

43



SHAPE OPTIMIZATION USING PARAMETRIC
LEVEL SET DESCRIPTION

44



GENERALIZED SHAPE OPTIMIZATION WITH XFEM

o Topology optimization:
— Fixed grid approach
— Image like description

— Limited control over regularity of
geometry

o Shape optimization
— CAD approach

— Good control of geometrical
characteristics

— Complex machinery to handle mesh
modifications, distortion, etc.

0 There is some room for another
approach!

=» Level Set description

45



GENERALIZED SHAPE OPTIMIZATION WITH XFEM

o Topology optimization:
— Variable material density =
interpolation of material properties
— Large scale optimization problem

— Unclear image (grey material, no shape
boundaries, chattering boundaries)

o Shape optimization
— Smooth boundaries

— A small humber of parameters is - .
necessary to describe the shape

o There is some room for another s ik,
approach! e

— Reduced work to transfer results to
detailed design models

= XFEM

46



GENERALIZED SHAPE OPTIMIZATION WITH XFEM

o LEVEL SET METHOD
— Alternative description to parametric description of curves

Constructive geometry using parametric level sets

o EXTENDED FINITE ELEMENT METHOD (XFEM)
— Alternative to remeshing methods
— Alternative to homogenization: void is void!

o XFEM + LEVEL SET METHODS

Efficient treatment of problem involving discontinuities and propagations

Early applications in structural optimisation Belytschko et al. (2003), Wang
et al. (2003), Allaire et al. (2004)

Problem formulation:
o Global and local constraints
o Limited number of design variables

47



EXTENDED FINITE ELEMENT METHOD

o Early motivation :

— Study of propagating crack in mechanical structures - avoid
the remeshing procedure (Moés et a/ IJNME Vol 46).

— Allow discontinuities inside the element
— nonconforming the mesh
o Principle :

— Allow the model to handle discontinuities that are
nonconforming with the mesh

— Introduce additional shape functions :
o To model a discontinuous behavior inside the element

n To model a non polynomial response (Enrich the shape functions
space)

— Applications : cracks, holes, multi-material, multi-phases, ...

48



Geometrical description using Level Sets

n Principle of Level Set Description (Sethian & Osher, 1988):
- Eulerian representation
- The interface is represented implicitly l
using a scalar function f(x)
- Interface = the zero level of f(x)

o(x,r) > 0 if x € structure
o(x,7) = 0 if x & structure boundary
o(x,r) < 0 if x € void

n Level Set is used to represent the structural geometry
n Shape parameter r=» Parametric Level Set

49



GEOMETRICAL DESCRIPTION USING LEVEL SETS

|
o Practical LS construction : a signed distance

function:

d(x,T) = sign(n - (x — xr)) mle% |x —xp|| VxeQ
XT

o In XFEM framework: discretization of the level
set,

o Each node has a Level Set dof
o Interpolation using classical shape functions

N
o(x,1) = Z bi(x,1)

o To obtain a Level Set, a first mesh is needed.
Mesh refinement can be necessary




GEOMETRICAL DESCRIPTION USING LEVEL SETS

Advantages :
o Same definition in 2D and 3D

o Combination of basic level sets is 5.
possible (union, intersection) 10.

o Close to image processing

o Topological modifications are
naturally handled 10

No modification of model definition 10
is needed when topology change

o Example: Two overlapping circles

Cbl(il?,y,b,?") — \/(33—b)2+y2_7n
@2(37,;9,1),7“) = \/(;L'_|_b)2_|_y2_,r




THE LEVEL SET METHOD

.
o Evolution of interface is ruled by the Hamilton Jacobi equation
[Allaire et al. 2003, Wang et al. 2003]

oY B Very difficult to
a TV Vel =0 use in practical
Y (x,t) = 0 given implementation!

— V: velocity function of T in the outward normal direction to
interface and is given by the sensitivity of the level set in
each point




DESIGN VARIABLES WITH LEVEL SET DESCRIPTION

o In structural optimization, the design variables can be either:
— The nodal values of the Level Set Wi
— Parameters of the elementary graphical features of the level

set .
. _ n
a
Level set function
o
More shape Par;ge‘:g‘;‘;“""
optimization | ’I
~ | |

Geometrical features

clel

Nodal values

S

More topology
optimization

7~

53



DESIGN VARIABLES WITH LEVEL SET DESCRIPTION

o Geometric shapes = “'shape optimization”
— Level set function is constructed using parametric CAD entities
— Geometrical parameters are used as design variables

— Complex geometry: build a global level set function applying
boolean operations :

¢ = max P (X, 57).

o Advantages / Drawbacks:
— (+) Simple and compact parametrization, manufacturable designs.

— (-) Limited freedom in the design. s



DESIGN VARIABLES WITH LEVEL SET DESCRIPTION

a
a

Nodal design variables : =» “topology optimization”
A design variable is associated to each mesh node

=>» yields local sensitivities slowing down the convergence.
Use a linear filter by [Kreissl and Maute (2012)] :

~1
¢; = (Z “‘zg) Z'H--‘-ij S5, w;; = max (0, (r — [[x; —x;])) .

j j
Filter does provide control over feature size but it does not guarantee

convergence with mesh refinement
Perimeter penalization is also beneficial for smoothness of solution

Advantages / Drawbacks:
— (+) More freedom in the design.

— (-) More design variables. 55



LEVEL SET AND FINITE ELEMENTS

o Two main approaches to combine the Level Set description and

the finite elements.

o Two strategies to deal with the Finite Elements that are crossed

by the boundary

— Use XFEM, GFEM etc. new finite elements that can deal with
nonconforming meshes

— Use Ersatz material approach, similar to material density

/
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EXTENDED FINITE ELEMENT METHOD

=  Bimaterial example :

ANNNN\\N

El | E2 —p
l Cad
x L

u(x) = N,u, + N,u, + N,@a, + N, ¢a,

FEM Enrichment

= Discontinuous

P(x) = Z‘l//i N ‘ _Z‘l/ji ‘Ni

= Solve extended system

K, K,l|u f e
Ku=f< = "
PaPu AR

S



XFEM for void-solid structures

o X-FEM are used for Material — Void interfaces

— No additional shape function = no additional DOF

— The displacement discretization is multiplied by a Heaviside
function

(Sukumar et al. 2001)

?
&

u(x) = Zuz’Nz‘(w)HW(m))

o The shape function has a zero value in the void
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XFEM Procedure

.
o Build the mesh for the domain o Detect element type

and build the Level Set — Green = FEM
— Red = void
A — Blue = X-FEM

o Cut the mesh o Create sub domain for
integration

N




XFEM: Numerical Integration

o Take into account of discontinuous behavior of shape functions
(Bi material, void-solid boundary...)

o Integrate over solid domain (no integration in void) or over
every material subdomains

- In FEM . ! 1 R -'H"-"gp
K = //BTHB |J| dnd€ = Z EL’QPB(fgprng)THB(fgpwT}’g:ﬂ) | Jgp|
S ap
— In X-FEM :

o Introduction of a cascade of two mappings
o Subdivision into triangles

K = f B'HBAV =Y Kn=)_ / BTHB|.Jy| | J2| dsdt
{250lid A A YA

Ny tA




XFEM: Numerical Integration

o 2D stiffness matrix :

Ngp
Kn =Y wepB(sgp.tey) HB(sgp. tgp) | 1] | J2] €
ap

o 2D mass Matrix :

N

ar
Ma = ‘OZ WapN (Sgps tp) ' N(sgp,top) [T1] [ 2] €
gp

61



XFEM: Numerical Integration: 3D case

o Integration:
— 2D:

solid Boundary

1 negative node 2 negative nodes 1 negative node
& 1 zero node 62



XFEM: loads

» FEM formulation of loads :
In practice : F= I fNTdF(X’ y) = I fN' ‘Jl‘dr(s)

. . r(xy) L T(s)
* Creation of line pressure element with nodes 1 and 2

—

3 f * Integration of shape function on the I' curve as N;=0 on I’
ot N,

2 2 N' =| N,

1 N,

. F= | fN"dl(x,y)= | fNT|J,|[dI'(&,
»  X-FEM formulation of loads : — m—[ ) (X,y) r(! | ‘ 1‘ (&)

P, In practice : = I fNT‘JlHJz‘dF(S)

r'(s)
* Creation of Integration scheme with points P, and P,

— o If /= cst, E:[

* Get gauss Points in (s), transform it into (§1) to evaluate N,

Ps * Integration of 1% degree shape function of the triangle on the
1 curve I’

63
Nizo> F=la b c]



XFEM: loads

o Validation of energy consistent loads in XFEM
YYVYVYVYVYVYY VYN

o

OOfelie Graph
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DESIGN SENSITIVITY ANALYSIS

o Four Methods are available:
— Finite Difference: 1 analysis per variable =» time consuming

— Automatic code differentiation = automatic generation of
function derivative in the computed code =» code
maintenance problems, black box

— Semi-analytic approach: usual approach

— Analytic approach: best approach, most difficult
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SEMI-ANALYTIC METHOD

Standard approach for sensitivity analysis in industrial
codes

o Discretized equilibrium equation: Kg=1Ff
o0 Generalized displacement derivative: Z— =K~ 1(af %Kq)
Z Z
o Structural matrices and load derivatives computed by finite
differences 0K _ K(z+02) — K(2)
0z dz
of _ F(z+dz) — f(2)
0z 0z
o Compliance sensitivity: oC _ qTaK q+ 2qTaf
0z 0z 0z
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SEMI-ANALYTIC METHOD

o0 Because of fixed grid approach:

— Sensitivity is computed only on the element modified by the
perturbation

— The perturbation can introduce new DOFs =» structural matrix
dimensions can change

5 L of bK
R R
0z 0z 0z
0K _ [KG+)|KE)
Oz 5z
.~ Element present at step =
K (z+6z) K (z)

[] Element present at step =z + 62
o New DOFs at step =z + éz
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SEMI-ANALYTIC METHOD

o Strategies to freeze the number of
dof

— What happens if perturbed level
sets comes into new FE?

— Ignore the new elements that
become solid or partly solid

o small errors, but minor
contributions

o practically, no problem
observed

n efficiency and simplicity
n validated on benchmarks




SEMI-ANALYTIC METHOD

o Ignore the new elements that introduce new DOFs because (van
Miegroet 2005) .

— Creation of DOFs does not often occur

— Creation of material is generally very limited compared to
the number of modified cut elements

— Practically, no problem observed on several test cases

3

o Illustration:
— Symmetric structure and loading
— Boundary represented with NURBS curves 2
— Design variables: control points Pix, P2y, P3y
— Fct = compliance 69



SEMI-ANALYTIC METHOD

o Ignore the new elements 3
o Point 1:
— In both cases, the sensitivity
is computed on 454 elements
— +dz sensitivity = -0.128
(2 elements created)
— -dz sensitivity = -0.128
(no element created)
o Point 2/3:

— In both cases, the sensitivity is
computed on 632 elements

— Point 3: +dz sensitivity = -37.497
(4 elements are created)

— Point 2: +dz sensitivity = -37.504

— Relative difference= 0.02%
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SEMI-ANALYTIC METHOD

Compliance sensitivity

Method r or Value Relative error (%)

FD 0.6 10~%  1677E-5 -

FD 06 —10% 1.620E-5 3.3%

SA 0.6 10~%  1.676E-5[ 0.025%

SA 0.6 —10""r 2.794E-6 [ 83% (16 new elements)

o With or <0, the perturbation introduces new DOFs

=>» A perturbation step going inward is safer but does not
guarantee correct sensitivity 71



Semi-analytic method — pathologic case

o Imagine that the parameter move: the circle to the right =
Impossible to prevent from creation of DOFs

o Strategies to circumvent DOFs creations:

— Added soft material in the void
domain (constant number of DOFs)

=» Small modification of the initial problem

— Compute elementary sensitivity rather than model sensitivity
and adapt perturbation step

=» Round off error may occur if perturbation step is small

— Analytical derivatives
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IMPLEMENTATION

o Implementation in @ multiphysic finite element code in C++ (OOFELIE

from Open Engineering www.open-engineering.com) u OOfelie Graph
o XFEM library: I
— 2D : library of quadrangles and triangles. |
— 3D : libray of tetraedra = Reas

— Void/solid; bimaterial

5.24e-

o Available results for
optimization:
— Compliance, Displacements, Energy density Stresses

— Strains, Stresses I -
I 73

— Eigenfrequencies

2.620-

OOfelie Graph

— Electrostatic
— Electromechanical (in work in progress)

o Visualization:
— Level Sets
— Results



MECHANICAL AND MANUFACTURING CONSTRAINTS

o With the Level Set approach, one has access to:
— All local stress constraints with high precision

— Easier to evaluate manufacturing constraints: e.g. unmolding
direction, maximum size, minimum size, etc. [Michailids et
al. 2015]
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APPLICATIONS

s 11 it.

Min Compliance
s.t. Volume constraint




APPLICATIONS

o Topology modification during optimization

e Two variables : center x,, center x,
¢ Min. potential energy under a surface constraint

e Uniform Biaxial loading : o,= 0, 0,= 0,
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Applications — 2D fillet in tension

a n
0 Shape of the fillet : generalized super ellipse X - b r
— Parameters: a,n, o |a| |b|
Objective: min (max Stress) ©x = Oq :J LZI
No Constraint B [,‘ _______________________________________ 3
Uni-axial Load: =l [
Solution: stress reduction of 30% D T

Obj Fct

6.00 9.00
Iteration nb

1.30

il

0.770

il

il

i 0354

0.506

0.242 0.163

-0.0216 -0.0275

Van Miegroet & Duysinx, SMO, 2007 77
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APPLICATION: Tuning fork

o Goal: tune the fork at prescribed frequency of a A-440 Hz
o Initial design
— =130 mm; t= 3.9 mm; e= 8.3mm; thick.= 5.5mm
— Frequency : 182 Hz
o Optimization Problem to tune the length:
Min Volume
s.t. Freq <440 Hz
Variable : x position of the cutting plane (a)....

Cutting Plane lo.m
/- E - |; ¢ 0.295
( (+ e i i
\\ - Optimum solution

o =80.27 mm
Freq =439.79 Hz

! i 0.148
H n

[ ™1 | M
L] *

Z A

- -

¥}
- 0.0741
X

0.000405 78




APPLICATIONS: Dam cross section optimization

o External boundary : 1 Surface Level Set defined by a Nurbs curve

Constraint

Hydrostatic pressure f(h), normal to the iso zero Level Set
Parameters : K;control points
Objective function : min Compliance
Constraints : Volume <0.3
Variables : Mvt. of K.along x axis
Solution after 30 iterations

Due to move limits on variable
Extruded Level Set = profile update




Generalized Shape Optimization With XFEM
(Van Miegroet et al., 2007)

R
o Connecting rod problem : ‘
— 2 Level Set 3D surface defined by Nurbs curves

— Parameters : Control points of the Nurbs
o Variables (12) : Mvt. of K:along y axis

— Objective function : min Volume

— S.t. Constraints : Von Mises<70 Mpa
o 65000 Elements ~ 30000 constraints \

— Volume reduction ~ 50%

l 7.00e+011
[ %A 1 »
- -
SR 7
i b} %
:“‘&:‘_

5.60e+011
I"‘“’”"” Addition of a super ellipse at center
4.10e+006

(same mesh) : gain of 3% volume &

4.20e+011

n

| 2.80e+011




Applications: 3D suspension

o Given a fixed geometry for fixation :

o Design a new suspension triangle with
same weight and a higher rigidity

o Definition of design domain from a bounding box .,

o Conforming surfaces for fixations and loads

450

o Fx=100 kN, Fy=-28kN, Fz=62.5 kN
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Applications: 3D suspension

.
o 3 NURBS curve to build 3 Level Sets, 7 variables

:-_\.

Top View @

o 1 Level Set with 2 variables:

eview (S A
Side View ‘\f’r 2 /

82



SUSPENSION ARM OPTIMIZATION

B e

83



Applications: 3D suspension

30 iterations, 42 % stiffer than initial design
with the same weight

84



OPTIMIZATION OF STRUCTURAL
COMPONENTS IN MULTIBODY SYSTEMS
DYNAMICS

85



EVOLUTION OF FINITE ELEMENT IN AUTOMOTIVE

]
FE: structural analysis of component

Multibody system: mechanism of
rigid bodies

von Mises stress

Flexible Multibody systems:
System approach (MBS)
& structural dynamics (FEM)

86



The method: Square plate with a hole

o Mesh definition (fixed during all the process) + Level Set definition:
Fixed mesh grid: 6*6 elements
Level Set: a cone

o No element is removed to create the hole but the properties of elements
are modified: the density and the Young modulus.

XA
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The method: Square plate with a hole

o For each node: Computation of the level set value.
o Different possibilities can happen for each « -

— 4 positive nodal values: Solid material

p = po and E = Ej
— 4 negative nodal values: void

p=10"3py and E = 107°E,

— Positive and negative nodal values
= boundary element



The method: Square plate with a hole

.
— For the boundary elements = SIMP law

0 Introduction of a pseudo-density

Volume of material

L4

B Volume of the element

0 SIMPlaw p = upo and E = p’E

— Conseqguence:

(a (b)



Equation of FEM-MBS dynamics

Motion of the flexible body (FEM) is represented by absolute
nodal coordinates q (Geradin & Cardona, 2001)

Dynamic equations of multibody system
Mg =g(g,q,t) =g** —g"™
Subject to kinematic constraints of the motion
®(q,t) =0

Solution based on an augmented Lagrangian approach of total

ener
2 oD

MG +B' (kh+p®)=g(g.at)  B=%
I kd(qg,t) =0
q'(0)=q’, and 4'(0) = ¢,




Time Integration

The set of nonlinear DAE solved using the generalized-o. method
by Chung and Hulbert (1993)

Define pseudo acceleration a:

l-«.)a. ., +a.a =1-«;)q,., +a:q,

n+1

Newmark integration formulae
qn+1 — qn + h(l_j/)an + hyan+1
d..,=9,+hq,..,+h*1/2-p)a, +hpa__,

Solve iteratively the dynamic equation system (Newton-
Raphson)

{MAq+CtAq+ KAQ+B'AL=Ar r=Mg—g+B"A
B=0



Shape optimization and level set description

o Novel approach for shape optimization of flexible components
ased on level set description [Tromme et al. 20141
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General form of the optimization problem

o Design problem is cast into a mathematical programming
problem

min go (x)
. g9; (x) <7;, j=1,
gggngf’u @_1,

o Provides a general and robust framework to the solution
procedure

o Efficient solver :
— Sequential Convex Programming (Gradient based algorithm)
= GCM (Bruyneel et al. 2002)



Sensitivity analysis

Gradient-based optimization methods require the first order
derivatives of the responses

of f(x+6x)—1(x)
OX OX

Finite differences

Perturbation of design variable
=>» Additional call to MBS code

Semi-analytical approach (Not yet developed)

or _r(x+ox)—r(x) 0P  D(X+0X)—D(X)
X OX OX OX




The formulation

o The formulation is a key point for this type of problems:
Very complex nonlinear behavior
o Impact on the design space

j
o

8 8 & 8

Mean Deviation [mm]

Deviation (Time Step 20)

oo

o Extremely important for gradient based algorithm
o Genetic algorithms

— Do not necessary give better results

— Computation time much more important



Connecting rod optimization

m The link between the piston and the crankshaft in a combustion
engine.

m During the exhaust phase, the connecting rod

elongates which can destroy the engine.
=»Collision between the piston and the valves.

m Minimization of the elongation

0.1

e
=}
>

'
o
-

©
o
o

Elongation of the connecting rod [mm]

o
8]
T

02% 400 200 300 400 500 600 700 800

Angle of rotation of the crankshaft []



Modeling of the connecting rod

o Simulation of a single complete cycle as the behavior is cyclic
(720°)

o Rotation speed 4000 Rpm
o Gas pressure taken into account.

4500_ .............. g e g e i S e

4000 e j i i : i —
. | =—=Kinematic simulation
3500} Y A ERRE -1 ——Dynamic simulation - Stabilization part| -
: 5 — Dynamic simulation - Actual cycle :

N [N ] w

(=) [42] o

o [=] o

o [=] o
T

Rotation speed [Rpm]

18001
e IR AN USRS WS R SV SR N USROS R

T A — — — — — — — — 5

00 0005 0.01 0.015 0.02 0.025 003 0035 0.04 0.045

Simulation time [s]




Local formulation

min m (x)
X

sit. k(AL(x,t;) < Alpmaz)

with 7 = 1,...,nbr time step

0 The constraint on the elongation A/ (x, t;) is considered at
each time step.



First application — 1 level set

The level set is defined in order to have an ellipse as interface.
3 different design variables :a, b, d. Here only c is chosen.

(x — cp)?

O(x,y) =

0.2

0




Results

o Convergence obtained after 12 iterations
o Monotonous behavior of the optimization process

0.3
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Results — Optimal design

o Even if the boundary of
the hole is not clear
on the mesh, the boundary
is defined by a CAD entity
and the connecting
rod can then be manufactured
without any post processing.




Second application — 3 level sets

o 3 ellipses are defined.
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Results

o Convergence obtained after 15 iterations
o Monotonous behavior of the optimization process
o Even better than the simpler case

0.305 : : , | : 0.0155
0.3 0.015
0,265 0014573
_ e}
é e e e o) 01 4 @
5 0.29 @
5 ]
3 “001352
0285 =
2 . -=0.013 E
@ 0.28 S
e | 10,0125 5

\ _ : o
0.27 -0.0115
0.265 | | | | | | 011
0 2 4 6 8 10 12 19

Iteration



Results — Optimal design

o Modification of the topology




SUMMARY OF LEVEL SET APPROACH

o Develop an intermediate approach between shape and topology
optimization

o Presenting ideally the advantages of both methods

FEM => X-FEM :
o Eulerian Method: work on fixed mesh

o No mesh perturbation and remeshing required =» Less time
spent in mesh (re)generation

o Alternative to homogenization/SIMP: void is void!

CAD model = Level Set:

0 ggpology can be changed as entities can merge or separate ><
ape

o Smooth curve description of boundaries >< Topology
o Convenient to use with X-FEM
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Shape and Topology Optimization of Lightweight
Automobile Transmission Components

P. Duysinx, G. Virlez, S. Bauduin, E. Tromme

LTAS - Aerospace and Mechanical Engineering Department -
University of Liege

N. Poulet
JTEKT Torsen Europe, Belgium
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OUTLINE

o Introduction & motivation
o Modelling of Torsen Differential

o Design approach using combined topology and shape
optimization

o Topology optimization
o Shape optimization

— 2D shape

— 3D shape

o Conclusion & Perspectives

107



MODELLING OF JTEKT
DIFFERENTIAL

108



SIMULATION OF DRIVELINE COMPONENTS

o

_ : S
— W ee
g .

o JTEKT TORSEN Central Differential

(Type C)
— Central differential (4 wheels drive
vehicles)

— Non symmetric distribution of torqt
(42/58)

Torsen differential



TYPE C TORSEN DIFFERENTIAL

|
o Composed of gear pairs and thrust washers
o Locking due to relative friction between gears & washers
o 4 working modes

(1)

Front

7)

ﬂ

1: housing 2: planet gears
3: sun gear 4: internal gear

5: coupling 6: case

(4)

(©)

(5)

Rear

7,8,9,10,11: thrust washers

(1) []

(6)



OPTIMIZATION OF DIFFERENTIAL HOUSING

o The goal of the work is to propose and validate a design
methodology of transmission components including topology
optimization and shape optimization

o The methodology will be validated on the optimization of the
housing of the type-C Torsen differential

o Different steps will be carried out:
— Specifications
— Modelling
— Topology optimization
o 2D/ 3D
— Shape optimization:
n 2D / 3D / dynamic loading

111



OPTIMIZATION OF DIFFERENTIAL CASING

o Housing is a heavy component that has not been properly
optimized w.r.t. weight

v

112




OPTIMIZATION OF
TRANSMISSION COMPONENTS
A HIERARCHICAL APPROACH

113



A HIERARCHICAL APPROACH

o STEP 1: SPECIFICATIONS
— Boundary conditions
— Material data

— Design specifications: stiffness, displacement constraints,
allowable stress limits, etc.

o STEP 2: TOPOLOGY OPTIMIZATION

— Determine optimal material distribution to minimize the
housing mass s.t. a set of fundamental constraints

— Use a subset of relevant constraints
n Compliance
n Displacement constraints : perpendicularity or parallelism
restrictions

114



A HIERARCHICAL APPROACH

o STEP 3: CAD model construction
— Interpretation of optimal material distribution
— Construction of CAD model
— Parametric design model
— Introduction of manufacturing and technological restrictions

o STEP 4: SHAPE & PARAMETRIC OPTIMIZATION
— Determine optimal set of parameters of the model
— Detailed analysis and design model
— Consider constraints including local constraints
n Compliance

n Displacement constraints : perpendicularity or parallelism
restrictions

o Stress constraints 115



A HIERARCHICAL APPROACH

o STEP 5: DETAILLED VERIFICATION

— Detailed verification of the optimized model using non linear
analysis

— Adaption to manufacturing constraints

o STEP 6: EXPERIMENTAL TESTING AND VALIDATION
— Build prototype
— Experimental testing

116



TOPOLOGY OPTIMIZATION

117



TOPOLOGY OPTIMIZATION

.. . . Solid:w =1 = Ei=Eo
o Topology optimization is formulated * pi= po
as an optimal material distribution
o Finite element discretization of the f
d esl g n d omain Design domain where
the material properties

have to be distributed

o Interpolation of material properties
between void and solid: SIMP law

E =x3E, and p = xp,
o Filtering densities (Sigmund)

o Efficient solution of optimization
problem based on sensitivity analysis
and mathematical R]rogramming
algorithms (CONLIN)




TOPOLOGY OPTIMIZATION

o Simplified geometrical model

— Remove unnecessary local
details e.g. small rounded
shapes

=>» use regular mesh with
rectangular elements

— Cover with adapted mesh size.

o 2D models are preferred <£
because 3D models are time
consuming and do not bring
sufficient information for

modest meshes \

Remove unnecessary
geometrical details ;4




O

TOPOLOGY OPTIMIZATION

Support: axial support

o Applied loads:

O

O

— Rotation speed
Rpm 3500 (engine) >
(6th 0.614 and axle ration 3.563)
- 2000 rpm at Housing

— Loads F1 & F2: axial pressure of bearing
and axial reaction of filet

Based on the application of a 1000 [Nm]
at the engine input (D-IG)

o F1 = IG end surface = 10147 [N]

n F2 = SG end surface = 8055 [N]

Perpendicularity and parallelism constraints:
1/1000

Max radial deformation: 1.E-5

|
[ \
3

[
EREEaze:
H

120
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TOPOLOGY OPTIMIZATION

Density
1.00 OOfelie Graph

0.800

0.600

complionoe 140 -

0.400

0.200

0.000100
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2D SHAPE OPTIMIZATION

122



CAD-FEM coupling in shape otpimization




2D shape optimization

Accurate geometrical model
Rotation speed + loads
Perpendicularity and parallelism

displacement constraints
Max radial deformation

Boundary Conditions:
— Axial fixation

— Rpm 4000 rm

— Loads based on 10.000 [Nm] D-IG
o F1 =1G end surface = 101470 [N]
o F2 = SG end surface = 80550 [N]

— Perp. and parall. restrictions: 20/1000
— Max radial def = 1E-4

LYY Y

Fy

12

S



2D shape optimization: parameterization

o Design variables: control
points and curve parameters
(here 9 dv)
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2D shape optimization

o No modification of inner design of housing

Mass [kg]

Stress by element [MPa]
Stress by nodes [MPa]
Perp Wash

Perp Thread

Max radial def [um]

o Modification of inner housing allowed

Mass [kg]

Stress by element [MPa]
Stress by nodes [MPa]
Perp Wash

Perp Thread

Max radial def [pum]

1,456
611
687

5,07/1000
3,78/1000

33,54

1,456
611
687

5,07/1000
3,78/1000
33,54

1,370
620
709

3,42/1000
3,79/1000
33,43

1,062
619
671

5,83/1000
4,15/1000
39,07

Min -5,9%
620
/
20/1000
20/1000
100

Min -27%
620
/
20/1000
20/1000
100 126



2D shape optimization: Optimal shape

]
Initial shape design Optimal shape design
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2D shape optimization
assessment of stress

SAMCEF

LightCar Project: Casing - Type C Torsen

27 NOV 2013 17:39:20

Contrainte equivalente
Deplacements nodaux (DX,DY,DZ)
Cas de charges 1

Energ. poten. 35.8877

Echelle geometrique

0.010
| —

Echelle numerique 174.550903
Echelle de la deformee 34.98
Valeur*1.E6

749.
675.
601.
527.
453,

379.
305.
231.
157.
83.
9.

Y

] ] ] 00 00 00 0 00 )

|
Z X

o Optimized shape

: mesh refinement
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2D shape optimization

o Validation of stress level of the optimized shape with a 3D-model
of optimized shape

“ SAMCEF Equivalent stress (Mean by Mode, Load Case Number[1]:1 ratio)

~Global Results
Potential energy 17.27334023 )

Type
@ Local [] Selection
) Global ) Mixed

T228171482

B50.57021701

578.32328201

S06.07634702

43382041203

361.58247704

28033554204

217.08860705

144 84167206

259473706

034720207
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3D SHAPE OPTIMIZATION
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3D shape optimization: level set description

|
o Novel approach for shape optimization of flexible components
tion (Tromme et al. 2014)

based on level set descri
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3D shape optimization

-] 1 Non design zone
1 Mesh is less important

o Design zone is mostly located in the upper
skin flange.

Cawaatsy

W g
r.‘}n -
S S
e
-

*
e

ey

2 "lé.-‘;,g“z_.- ‘.’:‘3‘,‘:.
R T 1%
AT AR b mh e AT

o One has to preserve a minimum thickness
of 1 mm on the inner side (to maintain High stress zone

the lubricant in the differential)
a Design
_ zone
o 3D model: use cyclic
periodicity (1/8= 45°)
Minimum
thickness:
lmmfor 4
Force 1 lubricant i
Non i
| design -
Forcez\‘x zone E—_




3D shape optimization

Blx) = (552 4 (35

o Single hole per 8t of the housing: different parameterizations
133



3D shape optimization
125 ¢
-7.5%

Drasa(X) = (=) 4 (52 )" —r

126 g
-6.5%

B(x) = (3™ 4 (G2 —

o Single hole and four holes (super elliptical shape with 5
parameters each) per 8t of the housing 134




CONCLUSIONS
& PERSPECTIVES
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CONCLUSIONS

o Great interest of industrial designers in using structural optimization to
weight reduction in automotive components

o Successful application of topology and shape optimization to design
cycle of driveline components.

o Approach validated on several components from real automotive
sector(JTEKT TORSEN and TOYOTA MOTOR)

o One major output of optimization is also to be able to find innovative
and feasible solutions in complex problems

o Nice and flexible approach of level set in solving shape optimization on
real life / industrial problems including 3D models.

— Especially great interest in optimizing dead geometrical models (not
necessary to have the parametric model)
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