INTRODUCTION TO SHAPE OPTIMIZATION

Pierre DUYSINX LTAS – Automotive Engineering Academic year 2020-2021

LAYOUT

- □ Introduction
 - Shape description approaches
- Parametric CAD description
 - Parametric design
 - Sensitivity analysis & velocity field problem
 - Example: The torque arm problem
 - Shape optimisation and FE error control
 - Boss Quattro system

LAYOUT

- □ SHAPE OPTIMIZATION USING LEVEL SET DESCRIPTION
 - Level Set Description
 - XFEM
 - Sensitivity analysis
 - Examples
- SHAPE OPTIMIZATION OF FLEXIBLE COMPONENTS IN MULTIBODY SYSTEMS
 - Shape description
 - Sensitivity analysis
 - Examples
- □ TOPOLOGY AND SHAPE OPTIMIZATION
 - Case study of the mass minimization of differential casing

INTRODUCTION AND MOTIVATION

SIZING, SHAPE, TOPOLOGY OPTIMIZATION

- Jog, Haber and Bendsoe (1996) have defined 3 types of structural optimization problems:
 - a/ Sizing
 - Cross section, thickness, Young modulus...
 - b/ Shape
 - Parameters of geometrical features: Lengths, angles, control point positions...
 - c/ Topology
 - Presence or absence of holes,
 - Connectivity of members and joints...

SHAPE REPRESENTATIONS

SHAPE DESCRIPTION

• One can distinguish different approaches to represent shapes:

- Lagrangian approach
 - Parametric boundary description: Explicit description
 - Define the boundaries using explicit parametric curves
 - Boundaries define a contour
 - $\hfill\square$ Component domain is inside the contour
- Eulerian approach: Implicit description
 - Level Set Method
 - Indicator function: Material description
 - Define the domain on a fixed grid

GEOMETRICAL DESCRIPTION

2

- Boundary description
 - Decompose complex shapes into geometrical features
 - Geometrical features can include parameters that can adjusted
 - For instance, plane cubic lines can be written as:

$$\mathbf{p}(u) = \mathbf{a}_{3}u^{3} + \mathbf{a}_{2}u^{2} + \mathbf{a}_{1}u + \mathbf{a}_{0}$$
$$\mathbf{p}(u) = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \begin{bmatrix} \mathbf{a}_{3} \\ \mathbf{a}_{2} \\ \mathbf{a}_{1} \\ \mathbf{a}_{0} \end{bmatrix} = \mathbf{U}\mathbf{A}$$

Where u is the parametric coordinate in [0,1], a_i [a_{xi}, a_{yi}] are the algebraic coefficients of the curve

Similarly a cubic spatial parametric surface can be represented as

Where u, v are the parametric coordinates and a_{ij} are the algebraic coefficients of the surface.

- Parametric curves or pieces of surfaces can be linked together into usual geometrical features with predefined shapes such as circles, ellipses.
- One can create a library of usual elements by interconnecting basic parametric geometric entities and defining the type of the geometric feature.
- Many different parametric features can then be combined to form a complex component description

- Shape optimization can be formulated using parametric geometric parameters defining its constituting shape description.
- The design variables are thus the numerical values of the geometric parameters.

LAGRANGIAN APPROACH: DOMAIN INDICATOR FUNCTION

- Several approaches to determine the indicator function
- Material density function
 - Binary
 - Continuous approximation
 - □ Porous cellular material → Homogenization
 - □ Interpolation function: SIMP, RAMP...
- Implicit boundary description
 - Level set description
 - Hamilton-Jacobi function
 - Parametric functions and math programming
 - Nodal values of Level Set
 - Phase Field Description

MATERIAL DISTRIBUTION FORMULATION

- Abandon CAD model description
 based on boundary description
- Optimal topology is given by an optimal material distribution problem
- Search for the indicator function of the domain occupied by the material
- The physical properties write
- □ The problem is intrinsically a binary
 0-1 problem → solution is extremely
 difficult to solve

 $\chi(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \Omega^m \\ 0 & \text{if } \mathbf{x} \in \Omega \setminus \Omega^m \end{cases}$ $E_{ijkl}(\mathbf{x}) = \chi(\mathbf{x}) E^0_{ijkl}$ $\rho(\mathbf{x}) = \chi(\mathbf{x}) \rho^0$

 $\chi \in \{0,1\}$

LEVEL SET DESCRIPTION

□ LEVEL SET METHOD [Sethian, 1999]

- Alternative description to parametric description of curves
- Implicit representation of the geometry
- Add the dimensionality by one
- The parametric description of the curve

$$\Gamma = \{ (\mathbf{x}, \mathbf{p}) \in D \times \mathbb{R}^{n_v} : \phi(\mathbf{x}, \mathbf{p}) = 0 \}$$

Is replaced an implicit description

 $\begin{cases} \phi(\mathbf{x}, \mathbf{p}) > 0, & \Leftrightarrow \mathbf{x} \in \Omega \text{ (material)} \\ \phi(\mathbf{x}, \mathbf{p}) < 0, & \Leftrightarrow \mathbf{x} \in D \setminus \Omega \text{ (void)} \\ \phi(\mathbf{x}, \mathbf{p}) = 0, & \Leftrightarrow \mathbf{x} \in \partial\Omega \text{ (interface).} \end{cases}$

There are many ways to define the level set corresponding to known shape. For instance the signed distance function

$$d\left(\mathbf{x}\right) = \min_{\mathbf{x}_{\Gamma} \in \Gamma} \left\| \mathbf{x} - \mathbf{x}_{\Gamma} \right\|, \quad \forall \mathbf{x} \in D$$

15

- Advantages :
 - Same definition in 2D and 3D
 - Combination of entities (min, max)
 - Removing entities
 - Separating entities
 - Merging entities
- Drawbacks :
 - Construction (available tools, analytical functions)
 - Mesh refinement necessary

□ Level Set of a square hole

Combination of two holes

17

- In XFEM framework: discretization of the level set,
 - Each node has a Level Set dof
 - Interpolation using classical shape functions

$$\Psi(x,s) = \sum_{i=1}^{n} N_i(\mathbf{x}) \, \Psi_i$$

Material assigned to a part of the Level Set (positive or negative)

CONSTRUCTIVE GEOMETRY USING LEVEL SETS

Constructive geometry approach

 Elaborate complex geometries using Level Sets: Primitive shapes with dimension parameters

 $\Psi = \Psi(\mathbf{x}, s)$

□ Linear combinations of basic functions

$$\Psi(x,s) = \sum_{i=1}^{n} s_i \,\chi_i(\mathbf{x})$$

- Library of graphic primitives and features Lines, circles, ellipses, rectangles, triangles □ NURBS
- Combine the basic levels sets using logic and Boolean operations \rightarrow constructive geometry

LEVEL SET BASED CONSTRUCTION SOLID GEOMETRY

- To represent complex geometries with Level Set
 - Introduction of Constructive Solid Geometry (CSG) based on Level Set [Chen et al. 2007]
 - CSG = build complex geometries by combining simple solid object called primitives using Boolean operators
 - → Development of "Level Set geometrical modeler"
- Geometrical primitives are represented with Level Set (analytical, geometrical, CAD based, predefined compound Level Sets)
- Use Boolean operators on Level Set primitives

LEVEL SET BASED CONSTRUCTION SOLID GEOMETRY

- □ Example of complex geometry with CSG Level Set
- Two cylinders
- One oblong hole
- One external oblong surface
- a 3 NURBS surfaces

- □ The Level Set geometry is organized as a tree
 - Where :
 - Each leaf is a basic level set
 - Each node is an operator
 - Each sub cell is classified after all cut as inside/outside or boundary

SHAPE OPTIMIZATION USING PARAMETRIC BOUNDARY DESCRIPTION

PARAMETRIC BOUNDARY DESCRIPTION

- Modification of external or inner boundaries
- Key issue: definition of a consistent parametric CAD model
 - Geometrical constraints (tangency, linking of points)
 - Geometrical features: straight lines, circles, NURBS, surfaces, etc.
- Implementation issue: API to and from CAD systems (CATIA, Pro E, etc.)

 Design variables = a set of independent CAD model parameters

A CAD MODEL WITH PARAMETERISATION

- Regular curves and surfaces:
 - Straight lines, arcs of circles, splines, NURBS
 - Planes, spherical, spline and NURBS surfaces
- <u>Model Parameterisation</u>:

Definition of the model with a set of **independent parameters**

SENSITIVITY ANALYSIS AND VELOCITY FIELD

 Position of a point after a perturbation of the design variable d_i

$$\mathbf{X}(d_i + \delta d_i) = \mathbf{X}(d_i) + \mathbf{V}_i \,\delta d_i$$

with $\mathbf{V}_i = \frac{\partial \mathbf{X}}{\partial d_i}$

Derivative of a response in a given point:

$$\begin{split} \frac{DR}{Dd_i} &= \frac{\partial R}{\partial d_i} + \sum_k \frac{\partial R}{\partial \mathbf{X}_k} \ \frac{\partial \mathbf{X}_k}{\partial d_i} \\ &= \frac{\partial R}{\partial d_i} + \mathbf{V}_i \ \nabla R \end{split}$$

 Conclusion: determine the velocity field at first

VELOCITY FIELD PROBLEM

- Key issue: Velocity field
- Practical calculation of velocity field
 - Boundary velocity field →
 CAD model
 - − Inner field → Velocity law

- Inner field:
 - Transfinite mapping
 - Natural / mechanical approach
 - Laplacian smoothing
 - Relocation schemes

Duysinx, Zhang, Fleury (1993)

VELOCITY FIELD DETERMINATION: THE MESH RELOCATION TECHNIQUE

On the boundaries:

The velocity field is uniquely determined by the parametric equations of the contour curves and surfaces

$$\Psi = \sum_{i} W_{i}(s) d_{i} \qquad \qquad \mathbf{V}_{\Gamma} = \left[\frac{\partial \Psi}{\partial d_{i}}\right] = [W_{i}(s)]$$

Inside of domain

The velocity field is determined with a node relocation technique Link the perturbations of neighbouring nodes with stiffness:

$$\sum_{i \neq j} k_{ij} \left(V_k |_{(i)} - V_k |_{(j)} \right) = 0$$

Advantages:

- low computation cost
- possible extension to volume structures and shells

Example of velocity field determined by node relocation

Velocity field relative to a modification of the radius of the notch

- □ Statement of the design problem:
 - Minimise Weight
 - 8 design parameters
 - s.t. Von Mises equivalent stress under 80000 N/mm² Geometry constraints (thickness of members > 1 cm)

Iteration 0

Iteration 0

Iteration 12

Von Mises stress : average values per finite element

Von Mises stress at Gauss Points

SHAPE OPTIMISATION AND F.E. ERROR CONTROL

- Shape modifications due to optimisation process can lead to important mesh distortions
- The optimisation results are strongly dependent on the quality of the analysis (especially the stresses)

ONE ALWAYS OPTIMISES THE MODEL

To have relevant and meaningful results

CONTROL THE ERROR LEVEL OF THE ANALYSIS

 Integration of an error estimation procedure and of a mesh adaptation tool into the optimisation loop

BOSS-Quattro

These Concepts have been implemented in a commercialised tool
 BOSS-Quattro developed by SAMTECH in partnership with LTAS (Ulg)

- Optimisation of parametric models
- Open system
- A design environment for multi-model / multidisciplinary problems
- Object oriented code
- Optimisation algorithms
- Application manager (more than a task manager)
- Model manager (update, perturbations, etc.)

Boss Quattro philosophy

Boss Quattro generic engines

Parametric Study

Gradient Optimization Genetic Algorithms

Monte Carlo

Design of Experiments Response Surfaces Predictors (RBF...)

Updating (what if study)

Sensitivity analysis in Boss Quattro

- Sensitivity (derivative) of response with respect to a design variable d
- Sensitivities are either:
 - Computed by finite-differences
 - Computed semi-analytically and read from SAMCEF, NASTRAN Sol200, NEUTRAL, Excell...
- □ Finite Difference scheme: OK!
- Semi analytical properties: requires a first order mesh perturbation law: mesh relocation technique

CAD-FEM coupling in shape otpimization

Boss Quattro + Think3 package

(described by Terms in natural language: "sporty", "aggressive", "dynamic"....)

Aesthetic Properties as carrier of Aesthetic Character

Simulation of reflection line flow

Reflection lines given as geometric curve to calculate curvature, inflection lines,...

Boss Quattro + Think3 package

Simulated reflection lines on the CAx model of a car's side panel.

The designer modifies the reflection line A to (target line) B which will be parallel to line C.

SHAPE OPTIMIZATION USING PARAMETRIC LEVEL SET DESCRIPTION

GENERALIZED SHAPE OPTIMIZATION WITH XFEM

- Topology optimization:
 - Fixed grid approach
 - Image like description
 - Limited control over regularity of geometry
- Shape optimization
 - CAD approach
 - Good control of geometrical characteristics
 - Complex machinery to handle mesh modifications, distortion, etc.
- There is some room for another approach!

→ Level Set description

GENERALIZED SHAPE OPTIMIZATION WITH XFEM

- Topology optimization:
 - Variable material density → interpolation of material properties
 - Large scale optimization problem
 - Unclear image (grey material, no shape boundaries, chattering boundaries)
- Shape optimization
 - Smooth boundaries
 - A small number of parameters is necessary to describe the shape
- There is some room for another approach!
 - Reduced work to transfer results to detailed design models

GENERALIZED SHAPE OPTIMIZATION WITH XFEM

LEVEL SET METHOD

- Alternative description to parametric description of curves
- Constructive geometry using parametric level sets

EXTENDED FINITE ELEMENT METHOD (XFEM)

- Alternative to remeshing methods
- Alternative to homogenization: void is void!

□ XFEM + LEVEL SET METHODS

- Efficient treatment of problem involving discontinuities and propagations
- Early applications in structural optimisation Belytschko et al. (2003), Wang et al. (2003), Allaire et al. (2004)
- Problem formulation:
 - Global and local constraints
 - Limited number of design variables

EXTENDED FINITE ELEMENT METHOD

- Early motivation :
 - Study of propagating crack in mechanical structures → avoid the remeshing procedure (Moës *et a*/ IJNME Vol 46).

Allow discontinuities inside the element
nonconforming the mesh

- D Principle :
 - Allow the model to handle discontinuities that are nonconforming with the mesh
 - Introduce additional shape functions :
 - $\hfill\square$ To model a discontinuous behavior inside the element
 - To model a non polynomial response (Enrich the shape functions space)
 - Applications : cracks, holes, multi-material, multi-phases, ...

Geometrical description using Level Sets

- Principle of Level Set Description (Sethian & Osher, 1988):
 - Eulerian representation
 - The interface is represented implicitly using a scalar function f(x)
 - Interface = the zero level of f(x)
 - $\begin{array}{llll} \phi(\mathbf{x},r) &> & 0 & \text{if} \quad \mathbf{x} \in \text{structure} \\ \phi(\mathbf{x},r) &= & 0 & \text{if} \quad \mathbf{x} \in \text{structure boundary} \\ \phi(\mathbf{x},r) &< & 0 & \text{if} \quad \mathbf{x} \in \text{void} \end{array}$

- Level Set is used to represent the structural geometry
- □ Shape parameter $r \rightarrow$ Parametric Level Set

GEOMETRICAL DESCRIPTION USING LEVEL SETS

Practical LS construction : a signed distance function:

$$\phi(\mathbf{x}, \Gamma) = sign(\mathbf{n} \cdot (\mathbf{x} - \mathbf{x}_{\Gamma})) \cdot \min_{\mathbf{x}_{\Gamma} \in \Gamma} \|\mathbf{x} - \mathbf{x}_{\Gamma}\| \quad \forall \mathbf{x} \in \Omega$$

- In XFEM framework: discretization of the level set,
 - Each node has a Level Set dof
 - Interpolation using classical shape functions

$$\phi(\mathbf{x}, r) = \sum_{i=1}^{N} \phi_i(\mathbf{x}, r)$$

To obtain a Level Set, a first mesh is needed.
 Mesh refinement can be necessary

GEOMETRICAL DESCRIPTION USING LEVEL SETS

Advantages :

- Same definition in 2D and 3D
- Combination of basic level sets is possible (union, intersection)
- Close to image processing
- Topological modifications are naturally handled
 No modification of model definit

No modification of model definition is needed when topology change

Example: Two overlapping circles

$$\phi_1(x, y, b, r) = \sqrt{(x-b)^2 + y^2} - r$$

$$\phi_2(x, y, b, r) = \sqrt{(x+b)^2 + y^2} - r$$

 $\phi(x, y, b, r) = \min(\phi_1, \phi_2)$

THE LEVEL SET METHOD

Evolution of interface is ruled by the Hamilton Jacobi equation
 [Allaire et al. 2003, Wang et al. 2003]

$$\frac{\partial \psi}{\partial t} + V \|\nabla \psi\| = 0$$

 $\psi(\mathbf{x}, t) = 0$ given

Very difficult to use in practical implementation!

 V: velocity function of Γ in the outward normal direction to interface and is given by the sensitivity of the level set in each point

DESIGN VARIABLES WITH LEVEL SET DESCRIPTION

- □ In structural optimization, the design variables can be either:
 - The nodal values of the Level Set Ψi
 - Parameters of the elementary graphical features of the level set $|(x-c_x)|^{\xi} + |(y-c_y)|^{\eta}$

$$\phi(\mathbf{x}) = \left| \frac{1}{a} \right|^{2} + \left| \frac{1}{b} \right|^{2} - 1.$$
Level set function
 ϕ
Parametrization
 $\phi(\mathbf{x}, f(\mathbf{s}))$
Geometrical features
 $\phi(\mathbf{x}, f(\mathbf{s}))$
Nodal values

DESIGN VARIABLES WITH LEVEL SET DESCRIPTION

- \Box Geometric shapes \rightarrow "shape optimization"
 - Level set function is constructed using parametric CAD entities
 - Geometrical parameters are used as design variables
 - Complex geometry: build a global level set function applying boolean operations :

$$\phi = \max_{i} \phi_{i}^{\mathsf{shape}}(\mathbf{x}, s_{i}).$$

- Advantages / Drawbacks:
 - (+) Simple and compact parametrization, manufacturable designs.
 - (-) Limited freedom in the design.

DESIGN VARIABLES WITH LEVEL SET DESCRIPTION

- □ Nodal design variables : \rightarrow "topology optimization"
- A design variable is associated to each mesh node
 - \rightarrow yields local sensitivities slowing down the convergence.
- □ Use a linear filter by [Kreissl and Maute (2012)] :

$$\phi_i = \left(\sum_j w_{ij}\right)^{-1} \sum_j w_{ij} \ s_j, \qquad w_{ij} = \max\left(0, \left(r - \|\mathbf{x}_i - \mathbf{x}_j\|\right)\right),$$

- Filter does provide control over feature size but it does not guarantee convergence with mesh refinement
- Perimeter penalization is also beneficial for smoothness of solution
- Advantages / Drawbacks:
 - (+) More freedom in the design.
 - (-) More design variables.

LEVEL SET AND FINITE ELEMENTS

- Two main approaches to combine the Level Set description and the finite elements.
- Two strategies to deal with the Finite Elements that are crossed by the boundary
 - Use XFEM, GFEM etc. new finite elements that can deal with nonconforming meshes
 - Use Ersatz material approach, similar to material density

EXTENDED FINITE ELEMENT METHOD

- Bi material example : 0.9 0.8 0.7 E2E1Shape function 6.0 7.0 7.0 0.3 0.2 0.1 0.2 0.6 0.8 0.4 ΓĚΜ Enrichment
- Discontinuous

$$\phi(x) = \sum |\psi_i N_i| - \sum |\psi_i| N_i$$

• Solve extended system

$$K \cdot u = f \Leftrightarrow \begin{bmatrix} K_{uu} & K_{ua} \\ K_{au} & K_{aa} \end{bmatrix} \begin{bmatrix} u \\ a \end{bmatrix} = \begin{bmatrix} f_u^{ext} \\ f_a^{ext} \end{bmatrix}$$

XFEM for void-solid structures

- □ X-FEM are used for Material Void interfaces
 - No additional shape function \rightarrow no additional DOF
 - The displacement discretization is multiplied by a Heaviside function

The shape function has a zero value in the void
 Assembly only element with active DOFs

XFEM Procedure

 Build the mesh for the domain and build the Level Set

- Detect element type
 - Green = FEM
 - Red = void
 - Blue = X-FEM

- Cut the mesh
 - Search for the intersection

Create sub domain for integration

XFEM: Numerical Integration

- Take into account of discontinuous behavior of shape functions (Bi material, void-solid boundary...)
- Integrate over solid domain (no integration in void) or over every material subdomains

- In FEM :

$$K = \int_{-1}^{1} \int_{-1}^{1} \hat{B}^{T} H \hat{B} |J| d\eta d\xi = \sum_{gp}^{N_{gp}} w_{gp} B(\xi_{gp}, \eta_{gp})^{T} H B(\xi_{gp}, \eta_{gp}) |J_{gp}| t$$

– In X-FEM :

- Introduction of a cascade of two mappings
- Subdivision into triangles

$$K = \int_{\Omega_{Solid}} B^T H B dV = \sum_{\Delta} K_{\Delta} = \sum_{\Delta} \int_{\Delta} \hat{B}^T H \hat{B} |J_1| |J_2| ds dt$$

XFEM: Numerical Integration

□ 2D stiffness matrix :

$$K_{\Delta} = \sum_{gp}^{N_{gp}} w_{gp} B(s_{gp}, t_{gp})^T H B(s_{gp}, t_{gp}) \left| J_1 \right| \left| J_2 \right| e^{-\frac{1}{2} \left| J_2 \right|} dt = \sum_{gp}^{N_{gp}} \left| J_2 \right| \left| J_2 \right| dt = \sum_{gp}^{N_{gp}} \left| J_2 \right| \left| J_2 \right| dt = \sum_{gp}^{N_{gp}} \left| J_2 \right| \left| J_2 \right| dt = \sum_{gp}^{N_{gp}} \left| J_2 \right| dt = \sum_{g$$

D 2D mass Matrix :

$$M_{\Delta} = \rho \sum_{gp}^{N_{gp}} w_{gp} N(s_{gp}, t_{gp})^T N(s_{gp}, t_{gp}) \left| J_1 \right| \left| J_2 \right| e$$

XFEM: Numerical Integration: 3D case

XFEM: loads

• FEM formulation of loads :

curve Γ

3

3

 P_1

 P_2

In practice :
$$\underline{F} = \int_{\Gamma(x,y)} f N^T d\Gamma(x, y) = \int_{\Gamma(s)} f N^T |J_1| d\Gamma(s)$$

• Creation of line pressure element with nodes 1 and 2
• Integration of shape function on the Γ curve as $N_3 = 0$ on Γ
• If $f = \operatorname{cst}$, $\underline{F} = \begin{bmatrix} fL \\ 2 \\ 2 \\ 2 \\ 0 \end{bmatrix} N^T = \begin{bmatrix} N_1 \\ N_2 \\ N_3 \end{bmatrix}$
X-FEM formulation of loads : $\underline{F} = \int_{\Gamma(x,y)} f N^T d\Gamma(x,y) = \int_{\Gamma(\xi,\eta)} f N^T |J_1| d\Gamma(\xi,\eta)$
In practice : $= \int_{\Gamma(s)} f N^T |J_1| |J_2| d\Gamma(s)$
• Creation of integration scheme with points P_1 and P_2
• Get gauss Points in (s), transform it into (ξ,η) to evaluate N_i
• Integration of 1^{st} degree shape function of the triangle on the

• Ni
$$\neq 0$$
 \rightarrow $\underline{F} = \begin{bmatrix} a & b & c \end{bmatrix}$

63

XFEM: loads

Validation of energy consistent loads in XFEM

DESIGN SENSITIVITY ANALYSIS

- □ Four Methods are available:
 - − Finite Difference: 1 analysis per variable → time consuming
 - Automatic code differentiation = automatic generation of function derivative in the computed code → code maintenance problems, black box
 - Semi-analytic approach: usual approach
 - Analytic approach: best approach, most difficult

Standard approach for sensitivity analysis in industrial codes

- Discretized equilibrium equation:
- Generalized displacement derivative:

$$Kq = f$$

$$\frac{\partial q}{\partial z} = K^{-1} \left(\frac{\partial f}{\partial z} - \frac{\partial K}{\partial z} q \right)$$

Structural matrices and load derivatives computed by finite differences \dot{o}

Compliance sensitivity:

$$rac{\partial K}{\partial z} \simeq rac{K(z+\delta z)-K(z)}{\delta z} \ rac{\partial f}{\partial z} \simeq rac{f(z+\delta z)-f(z)}{\delta z} \ rac{\partial C}{\partial z} = -q^T rac{\partial K}{\partial z} q + 2q^T rac{\partial f}{\partial z}$$

$$\frac{C}{\partial z} = -q^T \frac{\partial K}{\partial z} q + 2q^T \frac{\partial f}{\partial z}$$

- Because of fixed grid approach:
 - Sensitivity is computed only on the element modified by the perturbation
 - The perturbation can introduce new DOFs → structural matrix dimensions can change

Element present at step z

• New DOFs at step $z + \delta z$

Element present at step $z + \delta z$

- Strategies to freeze the number of dof
 - What happens if perturbed level sets comes into new FE?
 - Ignore the new elements that become solid or partly solid
 - small errors, but minor contributions
 - practically, no problem observed
 - efficiency and simplicity
 - validated on benchmarks

- Ignore the new elements that introduce new DOFs because (Van Miegroet 2005) :
 - Creation of DOFs does not often occur
 - Creation of material is generally very limited compared to the number of modified cut elements
 - Practically, no problem observed on several test cases

- □ Illustration:
 - Symmetric structure and loading
 - Boundary represented with NURBS curves
 - Design variables: control points P1x, P2y, P3y
 - Fct = compliance

2

- Ignore the new elements
- D Point 1:
 - In both cases, the sensitivity is computed on **454** elements
 - +dz sensitivity = -0.128
 (2 elements created)
 - dz sensitivity = -0.128(no element created)
- □ Point 2/3:
 - In both cases, the sensitivity is computed on 632 elements
 - Point 3: +dz sensitivity = -37.497
 (4 elements are created)
 - Point 2: +dz sensitivity = -37.504
 - Relative difference= 0.02%

$\delta r = 0$	$\delta r = 0$			0		$\delta r < 0$	
Compliance sensitivity							-
-	Method	r	δr	Value	Relative	error (%)	-
-	FD	0.6	$10^{-4}r$	1.677E-5	_		-
-	FD	0.6	$-10^{-4}r$	1.620E-5	3.3%		-
-	SA	0.6	$10^{-4}r$	1.676E-5	0.025%		
-	SA	0.6	$-10^{-4}r$	2.794E-6	83% (16	new elements)	Ī

- □ With $\delta r < 0$, the perturbation introduces new DOFs
- ➔ A perturbation step going inward is safer but does not guarantee correct sensitivity

Semi-analytic method – pathologic case

- □ Imagine that the parameter move: the circle to the right → Impossible to prevent from creation of DOFs
- □ Strategies to circumvent DOFs creations:
 - Added soft material in the void domain (constant number of DOFs)
 - ➔ Small modification of the initial problem

- Compute elementary sensitivity rather than model sensitivity and adapt perturbation step
- → Round off error may occur if perturbation step is small
- Analytical derivatives
IMPLEMENTATION

- Implementation in a multiphysic finite element code in C++ (OOFELIE from Open Engineering www.open-engineering.com)
- □ XFEM library:
 - 2D : library of quadrangles and triangles.
 - 3D : libray of tetraedra
 - Void/solid; bimaterial
- Available results for optimization:
 - Compliance, Displacements, Energy density
 - Strains, Stresses
 - Eigenfrequencies
 - Electrostatic
 - Electromechanical (in work in progress)
- Visualization:
 - Level Sets
 - Results

MECHANICAL AND MANUFACTURING CONSTRAINTS

- □ With the Level Set approach, one has access to:
 - All local stress constraints with high precision
 - Easier to evaluate manufacturing constraints: e.g. unmolding direction, maximum size, minimum size, etc. [Michailids et al. 2015]

APPLICATIONS

Min Compliance s.t. Volume constraint

APPLICATIONS

D Topology modification during optimization

- Two variables : *center* x₁, *center* x₂
- Min. potential energy under a surface constraint
- Uniform Biaxial loading : $\sigma_x = \sigma_0 \sigma_y = \sigma_0$

Applications – 2D fillet in tension

□ Shape of the fillet : generalized super ellipse $\frac{|x|^{\alpha}}{|\alpha|} + \frac{|y|''}{|b|} = r$

- Parameters : a,η,α
- Objective: min (max Stress) $\sigma_x = \sigma_0$
- No Constraint
- Uni-axial Load:
- Solution: stress reduction of 30%

APPLICATION: Tuning fork

- □ Goal: tune the fork at prescribed frequency of a A-440 Hz
- Initial design
 - I=130 mm; t= 3.9 mm; e= 8.3mm; thick.= 5.5mm
 - Frequency : 182 Hz
- Optimization Problem to tune the length:

Min Volume

s.t. Freq <440 Hz

Variable : x position of the cutting plane (α_{0})

APPLICATIONS: Dam cross section optimization

□ External boundary : 1 Surface Level Set defined by a Nurbs curve

- Hydrostatic pressure f(h), normal to the iso zero Level Set
- Parameters : *K_i* control points
- Objective function : min Compliance
- Constraints : Volume < 0.3 I/
- Variables : Mvt. of K_i along x axis
- Solution after 30 iterations
- Due to move limits on variable
- − Extruded Level Set → profile update

Generalized Shape Optimization With XFEM (Van Miegroet et al., 2007)

- Connecting rod problem :
 - 2 Level Set 3D surface defined by Nurbs curves
 - Parameters : Control points of the Nurbs
 - Variables (12) : Mvt. of K_i along γ axis
 - Objective function : min Volume
 - S.t. Constraints : Von Mises<70 Mpa
 - □ 65000 Elements ~ 30000 constraints
 - Volume reduction $\sim 50\%$

1.060+005

9.600+004

7.600+004

Obi Fct 8.60e+004

Applications: 3D suspension

- □ Given a fixed geometry for fixation :
- Design a new suspension triangle with same weight and a higher rigidity
- Definition of design domain from a bounding box
- Conforming surfaces for fixations and loads

□ Fx=100 kN, Fy=-28kN, Fz=62.5 kN

Applications: 3D suspension

□ 3 NURBS curve to build 3 Level Sets, 7 variables

SUSPENSION ARM OPTIMIZATION

Applications: 3D suspension

30 iterations, 42 % stiffer than initial design with the same weight

OPTIMIZATION OF STRUCTURAL COMPONENTS IN MULTIBODY SYSTEMS DYNAMICS

EVOLUTION OF FINITE ELEMENT IN AUTOMOTIVE

FE: structural analysis of component

von Mises stress

Multibody system: mechanism of rigid bodies

Flexible Multibody systems: System approach (MBS) & structural dynamics (FEM)

The method: Square plate with a hole

- Mesh definition (fixed during all the process) + Level Set definition:
 Fixed mesh grid: 6*6 elements
 Level Set: a cone
- No element is removed to create the hole but the properties of elements are modified: the density and the Young modulus.

The method: Square plate with a hole

- □ For each node: Computation of the level set value.
- Different possibilities can happen for each
 - 4 positive nodal values: Solid material

$$\rho = \rho_0$$
 and $E = E_0$

- 4 negative nodal values: void

$$\rho = 10^{-3}\rho_0$$
 and $E = 10^{-9}E_0$

- Positive and negative nodal values
 - = boundary element

The method: Square plate with a hole

- For the boundary elements \rightarrow SIMP law
 - □ Introduction of a pseudo-density

 $\mu = \frac{\text{Volume of material}}{\text{Volume of the element}}$

□ SIMP law $\rho = \mu \rho_0$ and $E = \mu^3 E_0$

- Consequence:

Equation of FEM-MBS dynamics

- Motion of the flexible body (FEM) is represented by absolute nodal coordinates q (Geradin & Cardona, 2001)
- Dynamic equations of multibody system $\mathbf{M}\ddot{\mathbf{q}} = \mathbf{g}(\dot{\mathbf{q}},\mathbf{q},t) = \mathbf{g}^{\text{ext}} - \mathbf{g}^{\text{int}}$
- Subject to kinematic constraints of the motion

$$\mathbf{\Phi}(\mathbf{q},t) = 0$$

Solution based on an augmented Lagrangian approach of total energy

$$\begin{bmatrix} \mathbf{M}\ddot{\mathbf{q}} + \mathbf{B}^{T} (k\lambda + p\mathbf{\Phi}) = \mathbf{g}(\dot{\mathbf{q}}, \mathbf{q}, t) & \mathbf{B} = \frac{\partial \mathbf{\Phi}}{\partial \mathbf{q}} \\ k\mathbf{\Phi}(\mathbf{q}, t) = 0 \\ \mathbf{q}'(0) = \mathbf{q}'_{0} \text{ and } \dot{\mathbf{q}}'(0) = \dot{\mathbf{q}}_{0} \end{bmatrix}$$

Time Integration

- The set of nonlinear DAE solved using the generalized- α method by Chung and Hulbert (1993)
- Define pseudo acceleration **a**:

$$(1-\alpha_m)\mathbf{a}_{n+1} + \alpha_m \mathbf{a}_n = (1-\alpha_f)\ddot{\mathbf{q}}_{n+1} + \alpha_f \ddot{\mathbf{q}}_n$$

Newmark integration formulae

$$\dot{\mathbf{q}}_{n+1} = \dot{\mathbf{q}}_n + h(1-\gamma)\mathbf{a}_n + h\gamma\mathbf{a}_{n+1}$$
$$\mathbf{q}_{n+1} = \mathbf{q}_n + h\dot{\mathbf{q}}_{n+1} + h^2(1/2-\beta)\mathbf{a}_n + h\beta\mathbf{a}_{n+1}$$

 Solve iteratively the dynamic equation system (Newton-Raphson)

$$\mathbf{M}\Delta \ddot{\mathbf{q}} + \mathbf{C}_t \Delta \dot{\mathbf{q}} + \mathbf{K}_t \Delta \mathbf{q} + \mathbf{B}^T \Delta \lambda = \Delta \mathbf{r} \qquad \mathbf{r} = \mathbf{M} \ddot{\mathbf{q}} - \mathbf{g} + \mathbf{B}^T \lambda$$
$$\mathbf{B} = \mathbf{0}$$

Shape optimization and level set description

 Novel approach for shape optimization of flexible components based on level set description [Tromme et al. 2014]

$$\phi(\mathbf{x}) = \sqrt{\left(\frac{x-c_x}{a}\right)^m + \left(\frac{y-c_y}{b}\right)^n - r}$$

General form of the optimization problem

Design problem is cast into a mathematical programming problem x_2 where x_2

$$\min_{\mathbf{x}} g_0(\mathbf{x})$$
s.t.
$$\begin{cases} g_j(\mathbf{x}) \le \overline{g}_j, & j = 1, \dots, m \\ \underline{x}_i \le x_i \le \overline{x}_i, & i = 1, \dots, n \end{cases}$$

- Provides a general and robust framework to the solution procedure
- Efficient solver :
 - Sequential Convex Programming (Gradient based algorithm)
 →GCM (Bruyneel et al. 2002)

Sensitivity analysis

 Gradient-based optimization methods require the first order derivatives of the responses

$$\Box \quad \text{Finite differences} \quad \frac{\partial f}{\partial x} \approx \frac{f(x + \delta x) - f(x)}{\delta x}$$

Perturbation of design variable

- ➔ Additional call to MBS code
- Semi-analytical approach (Not yet developed)

$$\frac{\partial \mathbf{r}}{\partial x} \approx \frac{\mathbf{r}(x + \delta x) - \mathbf{r}(x)}{\delta x} \qquad \frac{\partial \Phi}{\partial x} \approx \frac{\Phi(x + \delta x) - \Phi(x)}{\delta x}$$

The formulation

The formulation is a key point for this type of problems:
 Very complex nonlinear behavior

- Extremely important for gradient based algorithm
- Genetic algorithms
 - Do not necessary give better results
 - Computation time much more important

Connecting rod optimization

- The link between the piston and the crankshaft in a combustion engine.
- During the exhaust phase, the connecting rod elongates which can destroy the engine.
 Collision between the piston and the valves.
- Minimization of the elongation

Modeling of the connecting rod

- Simulation of a single complete cycle as the behavior is cyclic (720°)
- Rotation speed 4000 Rpm
- Gas pressure taken into account.

Local formulation

$$\min_{\mathbf{x}} m(\mathbf{x})$$
s.t. $k \left(\Delta l(\mathbf{x}, t_i) \le \Delta l_{max} \right)$

with $i = 1, \ldots$, nor time step

The constraint on the elongation $\Delta l(\mathbf{x}, t_i)$ is considered at each time step.

First application – 1 level set

The level set is defined in order to have an ellipse as interface.
3 different design variables :a, b, d. Here only c is chosen.

Results

- Convergence obtained after 12 iterations
- Monotonous behavior of the optimization process

Results – Optimal design

 Even if the boundary of the hole is not clear on the mesh, the boundary is defined by a CAD entity and the connecting rod can then be manufactured without any post processing.

Second application – 3 level sets

□ 3 ellipses are defined. $\Phi(x,y) = \frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} - c = 0$

Results

- Convergence obtained after 15 iterations
- Monotonous behavior of the optimization process
- Even better than the simpler case

Results – Optimal design

Modification of the topology

SUMMARY OF LEVEL SET APPROACH

- Develop an intermediate approach between shape and topology optimization
- Presenting ideally the advantages of both methods

 $\mathsf{FEM} \twoheadrightarrow \mathsf{X}\text{-}\mathsf{FEM}:$

- Eulerian Method: work on fixed mesh
- No mesh perturbation and remeshing required
 Less time spent in mesh (re)generation
- Alternative to homogenization/SIMP: void is void!

CAD model \rightarrow Level Set:

- Topology can be changed as entities can merge or separate >< Shape
- □ Smooth curve description of boundaries >< Topology
- Convenient to use with X-FEM

Shape and Topology Optimization of Lightweight Automobile Transmission Components

<u>P. Duysinx</u>, G. Virlez, S. Bauduin, E. Tromme LTAS - Aerospace and Mechanical Engineering Department -University of Liège

> N. Poulet JTEKT Torsen Europe, Belgium

OUTLINE

- □ Introduction & motivation
- Modelling of Torsen Differential
- Design approach using combined topology and shape optimization
- Topology optimization
- □ Shape optimization
 - 2D shape
 - 3D shape
- Conclusion & Perspectives

MODELLING OF JTEKT DIFFERENTIAL
SIMULATION OF DRIVELINE COMPONENTS

- JTEKT TORSEN Central Differential (Type C)
 - Central differential (4 wheels drive vehicles)
 - Non symmetric distribution of torqu (42/58)

Torsen differential

Courtesy of JTEKT

TYPE C TORSEN DIFFERENTIAL

- Composed of gear pairs and thrust washers
- Locking due to relative friction between gears & washers
- □ 4 working modes

OPTIMIZATION OF DIFFERENTIAL HOUSING

- The goal of the work is to propose and validate a design methodology of transmission components including topology optimization and shape optimization
- The methodology will be validated on the optimization of the housing of the type-C Torsen differential
- Different steps will be carried out:
 - Specifications
 - Modelling
 - Topology optimization
 - 0 2D / 3D
 - Shape optimization:
 - D 2D / 3D / dynamic loading

OPTIMIZATION OF DIFFERENTIAL CASING

Housing is a heavy component that has not been properly optimized w.r.t. weight

OPTIMIZATION OF TRANSMISSION COMPONENTS A HIERARCHICAL APPROACH

A HIERARCHICAL APPROACH

- □ STEP 1: SPECIFICATIONS
 - Boundary conditions
 - Material data
 - Design specifications: stiffness, displacement constraints, allowable stress limits, etc.
- □ STEP 2: TOPOLOGY OPTIMIZATION
 - Determine optimal material distribution to minimize the housing mass s.t. a set of fundamental constraints
 - Use a subset of relevant constraints
 - Compliance
 - Displacement constraints : perpendicularity or parallelism restrictions

A HIERARCHICAL APPROACH

- □ STEP 3: CAD model construction
 - Interpretation of optimal material distribution
 - Construction of CAD model
 - Parametric design model
 - Introduction of manufacturing and technological restrictions
- □ STEP 4: SHAPE & PARAMETRIC OPTIMIZATION
 - Determine optimal set of parameters of the model
 - Detailed analysis and design model
 - Consider constraints including local constraints
 - Compliance
 - Displacement constraints : perpendicularity or parallelism restrictions
 - Stress constraints

A HIERARCHICAL APPROACH

- □ STEP 5: DETAILLED VERIFICATION
 - Detailed verification of the optimized model using non linear analysis
 - Adaption to manufacturing constraints
- □ STEP 6: EXPERIMENTAL TESTING AND VALIDATION
 - Build prototype
 - Experimental testing

- Topology optimization is formulated as an optimal material distribution
- Finite element discretization of the design domain
- Interpolation of material properties between void and solid: SIMP law

 $E = x^3 E_0$ and $\rho = x \rho_0$

- Filtering densities (Sigmund)
- Efficient solution of optimization problem based on sensitivity analysis and mathematical programming algorithms (CONLIN)

- Simplified geometrical model
 - Remove unnecessary local details e.g. small rounded shapes

→ use regular mesh with rectangular elements

- Cover with adapted mesh size.
- 2D models are preferred because 3D models are time consuming and do not bring sufficient information for modest meshes

Remove unnecessary geometrical details 119

- Support: axial support
- Applied loads:
 - Rotation speed
 - Rpm 3500 (engine) \rightarrow
 - (6th 0.614 and axle ration 3.563)
 - \rightarrow 2000 rpm at Housing
 - Loads F1 & F2: axial pressure of bearing and axial reaction of filet

Based on the application of a 1000 [Nm] at the engine input (D-IG)

- \square F1 = IG end surface = 10147 [N]
- \square F2 = SG end surface = 8055 [N]
- Perpendicularity and parallelism constraints: 1/1000
- Max radial deformation: 1.E-5

2D SHAPE OPTIMIZATION

CAD-FEM coupling in shape otpimization

- Accurate geometrical model
- Rotation speed + loads
- Perpendicularity and parallelism displacement constraints
- Max radial deformation
- Boundary Conditions:
 - Axial fixation
 - Rpm 4000 rm
 - Loads based on 10.000 [Nm] D-IG
 - □ F1 = IG end surface = 101470 [N]
 - \square F2 = SG end surface = 80550 [N]
 - Perp. and parall. restrictions: 20/1000
 - Max radial def = 1E-4

2	*	↑↑↑↑ F ₁	•	
		Ţ		
			F_{2}	24

2D shape optimization: parameterization

- Design variables: control points and curve parameters (here 9 dv)
 - X_11_12r
 - Y11
 - X9
 - Y9
 - Cr
 - X24
 - Y24
 - X25
 - Y12_14
 - +filet

No modification of inner design of housing

	Initial model	Optimal Model		
Mass [kg]	1,456	1,370	Min	-5,9
Stress by element [MPa]	611	620	620	
Stress by nodes [MPa]	687	709	/	
Perp Wash	5,07/1000	3,42/1000	20/1000	
Perp Thread	3,78/1000	3,79/1000	20/1000	
Max radial def [µm]	33,54	33,43	100	

Modification of inner housing allowed

	Initial model	Optimal Model		
Mass [kg]	1,456	1,062	Min	-27
Stress by element [MPa]	611	619	620	
Stress by nodes [MPa]	687	671	/	
Perp Wash	5,07/1000	5,83/1000	20/1000	
Perp Thread	3,78/1000	4,15/1000	20/1000	
Max radial def [µm]	33,54	39,07	100	126

%

2D shape optimization: Optimal shape

Initial shape design

Optimal shape design

2D shape optimization: assessment of stress

Optimized shape: mesh refinement

 Validation of stress level of the optimized shape with a 3D-model of optimized shape

129

3D SHAPE OPTIMIZATION

3D shape optimization: level set description

 Novel approach for shape optimization of flexible components based on level set description (Tromme et al. 2014)

$$\phi(\mathbf{x}) = \sqrt{\left(\frac{x-c_x}{a}\right)^m + \left(\frac{y-c_y}{b}\right)^n} - r$$

- Design zone is mostly located in the upper skin flange.
- One has to preserve a minimum thickness of 1 mm on the inner side (to maintain the lubricant in the differential)
- 3D model: use cyclicperiodicity (1/8= 45°)

Single hole per 8th of the housing: different parameterizations 133

Single hole and four holes (super elliptical shape with 5 parameters each) per 8th of the housing

CONCLUSIONS & PERSPECTIVES

CONCLUSIONS

- Great interest of industrial designers in using structural optimization to weight reduction in automotive components
- Successful application of topology and shape optimization to design cycle of driveline components.
- Approach validated on several components from real automotive sector(JTEKT TORSEN and TOYOTA MOTOR)
- One major output of optimization is also to be able to find innovative and feasible solutions in complex problems
- Nice and flexible approach of level set in solving shape optimization on real life / industrial problems including 3D models.
 - Especially great interest in optimizing dead geometrical models (not necessary to have the parametric model)