
1 
MECA0027 - Home work 3 - Topology Optimization 

 

Academic year 2020-2021 
 

Structural & Multidisciplinary Optimization 
Computer Project: Building your Topology Optimization tool 

 
Optional Computer Assignment #3 

 
1. Introduction 

 
The following exercises are based on “A 99-line topology optimization code written in 
Matlab” (Sigmund, 2001). Both the code and a preprint of the paper can be downloaded 
from the web site www.topopt.dtu.dk or from the course web page 
www.ingveh.ulg.ac.be. The exercises require some basic knowledge of structural 
mechanics, finite element analysis and optimization theory. 
 
You will be asked to elaborate your own topology optimization tool by adding several 
features to the basic code provided initially. The different steps of this process will be 
carried out through a sequence of improvement steps. At the end of the course you will 
be able to solve design problems using your personal code. 
 
The accompanying paper (Sigmund, 2001) will give a lot of hints to solve the first part of 
the project. Other important information can be found in the Appendices. 
 

2. Getting started 
 

• Download the proposed starting code top.m from web site and read carefully 
the reference papers Sigmund (2001) 

 

• Run the default MBB-beam example by writing top(60,20,0.5,3.0,1.1) in MATLAB 
command line. 

 

• Start experimenting with the code. 
 

• Keep an original version of the MATLAB code and start editing new versions 
clearly identified. 

 

http://www.topopt.dtu.dk/
http://www.ingveh.ulg.ac.be/
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3. Experiment with your first topology optimization code 
 
The basic code that you got solves the problem of optimizing the material distribution in 
the case of the MBB-beam such that its compliance is minimized. It is requested to 
investigate and develop several extensions of the code to extend the scope of the basic 
tool. 

 
Fig 1 : MBB-beam problem : geometry and boundary conditions 

 

 
Fig 2 : MBB-beam problem : design model accounting for symetry conditions 

 
3.1 Test the influence of the numerical parameters 
 
Use the original MATLAB code to investigate the influence of the FE discretization 
(nelx*nely) upon the optimal topology. Perform also an investigation of  

• The filter size rmin = 1.6, 2.0, 4.0 

• The penalization parameter to assess their influence over the optimal layout. 
Test p=1.0, 1.6, 2.0, 3.0, 4.0, 8.0 

3L 

6L 
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• The impact of the bound over the volume V=15%, 30%, 45%, 60% 

• The minimum gauge of the density on the optimal compliance value. Xmin = 0.1, 
0.01, 0.001 

 
For your test, solve the optimization problem for a constant value of the penalization 
parameter and for a variable value. Discuss the results. 
 
3.2 Implement other boundary and load conditions 
 
Change the boundary conditions (support and loading) in order to be able to solve 
different problems. Try for instance the famous following example, called Michel beam 
problem 

 
Fig 3 : Michel cantilever beam problem 

 
Study the impact of other support conditions upon the optimal layout. Investigate the 
following issues too: 

• Does the magnitude of the loading influence the design? 

• How the support conditions modify the layout? 

• Does the direction of the forces change the design? 
 
3.3 Try to solve other design problems 
 
Generalize your code by finding a way to define easily other geometries. To validate 
your developments, select a couple of problems out of the ones that are suggested 
below and solve them using topology optimization:  
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Fig 4 : Bridge problem 1. Point load. One end supported. One end clamped. 

 

 
Fig 5 : Bridge problem 2. Point load. Both ends are clamped. 

 

 
Fig 6 : Bridge problem 3. 3 point loads applied simultaneously.  

One end supported. One end clamped. 
 

 
Fig 7 : Bridge problem 4. Distributed load. One end supported. One end clamped. 
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Fig 8 : Bridge problem 5. Distributed load at mid elevation. One end supported. Clamped 

boundaries 
 

 
Fig 9 : Bridge problem 6. Distributed load at top elevation. Clamped boundaries. 

 
 
3.4 Implement passive elements 
 
In some applications, it is usual to have zones in which one has to enforce either full 
material or void (holes). Modify your code to account for zones prescribed to take the 
minimum density (nearly zero) and other ones in which the density is one. Compare the 
optimal compliance once you have introduced such zones in the design domain. 
 

 
Fig. 10: Prescribed zones with void and full material densities 
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Fig 11 : Bridge problem 7. Point load. Impose two layers of elements to enforce the 

presence of the road. One end supported. One end clamped. 
 

4. Deadline and milestones 
 
The HW3 conducts to bonus points for the final mark of the project part. 
 
Solving partially the HW3 is allowed. Marks will be given for the parts of the assignment 
that are correctly achieved.  
 
Reports must be written using a word processor (MS Word or Latex). Reports are 
bounded to max 20 pages. Appendices (not counted in the 20 pages) include all 
computer codes and additional material that might be necessary. 
 
Reports have to be in pdf format and should entitled Name_Firstname_HW3.pdf. 
 
The report and its attachments for HW3 of Topology optimization have to be posted by 
emails to Pierre Duysinx (p.duysinx@uliege.be), to Pablo Alarcon (palarcon@uliege.be), 
and to Denis Trillet (dtrillet@uliege.be) by December 24, 2020 at 12:00 CET. 
 

5. References 
 
Sigmund 0. (2001). A 99-line topology optimization code written in MATLAB. Structural 
and Multidisciplinary Optimization, 21, 120-127. 
 

mailto:palarcon@uliege.be
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A. APPENDICES 
 

A.1 Plotting displacements 
 
Insert the following lines in your program instead of the current plotting line: 
 
% colormap(gray); imagesc(-x); axis equal; axis tight; axis off; pause(1e-6); 
colormap(gray); axis equal; 
for ely = 1:nely 
   for elx = 1:nelx 
     n1 = (nely+1)*(elx-1)+ely; 
     n2 = (nely+1)* elx +ely; 
     Ue = 0.005*U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); 
     ly = ely-1; lx = elx-1; 
     xx = [Ue(1,1)+lx Ue(3,1)+lx+1 Ue(5,1)+lx+1 Ue(7,1)+lx ]'; 
     yy = [-Ue(2,1)-ly -Ue(4,1)-ly -Ue(6,1)-ly-1 -Ue(8,1)-ly-1]'; 
     patch(xx,yy,-x(ely,elx)) 
   end 
end 
drawnow; clf; 

 
 
A.2 Efficient matrix assembly for large problems 
 

To handle large problems, you may substitute the transparent and easy-to-read stiffness 
matrix assembly:  

K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));  
F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);  
for elx = 1:nelx  
   for ely = 1:nely  
     n1 = (nely+1)*(elx-1)+ely;  
     n2 = (nely+1)* elx +ely;  
     edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1; 2*n2+2; 2*n1+1; 2*n1+2];  
     K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;  
   end  
end  

with the much more efficient assembly using a list of triplets:  

I = zeros(nelx*nely*64,1); J = zeros(nelx*nely*64,1); X = zeros(nelx*nely*64,1);  
F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);  
ntriplets = 0;  
for elx = 1:nelx  
   for ely = 1:nely  
     n1 = (nely+1)*(elx-1)+ely;  
     n2 = (nely+1)* elx +ely;  
     edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2];  
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     xval = x(ely,elx)^penal;  
     for krow = 1:8  
       for kcol = 1:8  
         ntriplets = ntriplets+1;  
         I(ntriplets) = edof(krow);  
         J(ntriplets) = edof(kcol);  
         X(ntriplets) = xval*KE(krow,kcol);  
       end  
     end  
   end  
end  
K = sparse(I,J,X,2*(nelx+1)*(nely+1),2*(nelx+1)*(nely+1)); 

 

A.3 The strain displacement matrix 

bmat = [-1/2 0 1/2 0 1/2 0 -1/2 0  
   0 -1/2 0 -1/2 0 1/2 0 1/2  
   -1/2 -1/2 -1/2 1/2 1/2 1/2 1/2 -1/2];  

 
A.4 The constitutive matrix for plane stress 

Emat = E/(1-nu^2)*[ 1 nu 0  
   nu 1 0  
   0 0 (1-nu)/2];  

 
A.5 The mass matrix 
 
m0 = [4/9 0 2/9 0 1/9 0 2/9 0  
   0 4/9 0 2/9 0 1/9 0 2/9  
   2/9 0 4/9 0 2/9 0 1/9 0  
   0 2/9 0 4/9 0 2/9 0 1/9  
   1/9 0 2/9 0 4/9 0 2/9 0  
   0 1/9 0 2/9 0 4/9 0 2/9  
   2/9 0 1/9 0 2/9 0 4/9 0  
   0 2/9 0 1/9 0 2/9 0 4/9]/4/(nelx*nely); 
 

A.6 The thermal stiffness matrix 
 
KE = [2/3 -1/6 -1/3 -1/6 
      -1/6 2/3 -1/6 -1/3 
      -1/3 -1/6 2/3 -1/6 
      -1/6 -1/3 -1/6 2/3 
      ]; 
 


