Topology Optimization of a Prototype Race Car Rear Wing Pillar

ADESS AG
Balanstrasse 73 Haus 24
D-81541 München
GERMANY
Tel: +49 89 30 90 895 10
Fax: +49 89 30 90 895 99
info@adess-ag.com
www.adess-ag.com

Elias AMRO
Development Engineer
Tel: +49 89 30 90 89 517
Mob: +49 151 66 41 59 37
elias.amro@adess-ag.com

Altair
6th European Altair Technology Conference
April 22nd-24th 2013
Turin Italy

HyperWorks

http://www.lotus-lmp2.com
Advanced Design and Engineering Systems Solutions

Neue Balan campus
Munich, Germany

Formula 1 and Le Mans Prototype experience

Design

Computational Fluid Dynamics (CFD)

Finite Element Analysis (FEA)

Wind tunnel testing

Introduction
Introduction

- New Le Mans Prototype: Lotus T128 LMP2
- Regulations 2014 compliant
- 2013 World Endurance Championship (WEC)
- 2 cars sold
- LPM1 concept under consideration
Problem definition

- Rear wing pillar

- Specifications:
 - Structural aluminium alloy
 - Yield strength (S_y) = 280MPa
 - 15mm thick plate
 - 1000mmx350mm
 - 8.1kg

- Problem: excessive mass of the rear structure of the car

- Potential mass savings in rear wing pillar

- Aim of the study: minimise the mass of the rear wing pillar while sustaining aerodynamic load and complying with FIA (Fédération Internationale de L'Automobile) regulations
Problem definition

- Load cases:
 - Rear wing pillar initial design with rear wing assembly

1. Aerodynamic forces
 - Maximum speed in straight line
 - Vertical static load

2. FIA regulations
Analysis

- Optimization Constraints:

<table>
<thead>
<tr>
<th>Load case</th>
<th>Stress</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sy</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Sy</td>
<td>10 mm (z)</td>
</tr>
</tbody>
</table>

- Optimization process:

→ optimization from closed volume necessarily means reduction in stiffness!
Results

- Final result
 - Element density plot
 - Initial rear wing pillar
 - Manufactured rear wing pillar
 - 8.1kg
 - 3.7kg
 - -54% mass
 - 1.10mm/kg
 - 0.36mm/kg
 - +205% Stiffness to mass ratio

2013 EATC Turin

Tuesday 23rd of April 2013
Conclusions

- Rear wing pillar reduction in mass
- Part behaviour understanding
- Rear structure mass target
Thank you