TOPOLOGY OPTIMIZATION: FUNDAMENTALS

Pierre DUYSINX LTAS – Automotive Engineering Academic year 2021-2022

LAY-OUT

- □ Introduction
- Topology problem formulation: Problem statement
- Compliance minimization
- Homogenization method vs SIMP based
- Filtering techniques
- Sensitivity analysis
- Solution of optimization problems using structural approximations and dual maximization
- Vibration Problems
- Applications

INTRODUCTION

What is topology?

STRUCTURAL & MULTIDISCIPLINARY OPTIMISATION

- TYPES OF VARIABLES
 - a/ Sizing
 - b/ Shape
 - c/ Topology
 - (d/ Material)
- □ TYPES OF OPTIMISATION
 - structural
 - multidisciplinary
 - □ structural
 - aerodynamics,
 - □ thermal,
 - manufacturing

Topology optimization

- One generally distinguishes two approaches of topology optimization:
 - Topology optimization of <u>naturally discrete structures</u> (e.g. trusses)
 - Topology optimization of <u>continuum structures</u> (eventually after FE discretization)

Why topology optimization?

CAD approach does not allow topology modifications

TOPOLOGY PROBLEM FORMULATION

TOPOLOGY OPTIMIZATION FORMULATION

- Abandon CAD model description
 based on boundary description
- Optimal topology is given by an optimal material distribution problem
- Search for the indicator function of the domain occupied by the material
- The physical properties write
- □ The problem is intrinsically a binary
 0-1 problem → solution is extremely
 difficult to solve

$$\chi(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \Omega^m \\ 0 & \text{if } \mathbf{x} \in \Omega \setminus \Omega^m \end{cases}$$

$$E_{ijkl}(\mathbf{x}) = \chi(\mathbf{x}) E_{ijkl}^{0}$$
$$\rho(\mathbf{x}) = \chi(\mathbf{x}) \rho^{0}$$

 $\chi \in \{0,1\}$

MATERIAL DENSITY FUNCTION

- Avoid 0/1 problem and replace by a continuous approximation considering a variable density material running from void (0) to solid (1) $\chi \in [0, 1]$
 - Homogenization law of mechanical properties a porous material for any volume fraction (density) of materials
 - Mathematical interpolation and regularization

□ SIMP model $E = x^p E^0$ □ RAMP

- Penalization of intermediate densities to endup with black and white solution
- Efficient solution of optimization problem based on sensitivity analysis and gradient based mathematical programming algorithms

IMPLEMENTION OF MATERIAL DENSITY FUNCTION

- Implementation of material density approach is rather easy:
 - Fixed mesh
 - Design variables are element or nodal densities
 - Similar to sizing problem
 - SIMP law is easy to code
 - Sensitivity of compliance is cheap
 - Use efficient gradient based optimization algorithms as MMA

A FIRST EXAMPLE: GENESIS OF A STRUCTURE

E. Lemaire, PhD Thesis, Uliege, 2013

TOPOLOGY OPTIMIZATION AS A COMPLIANCE MINIMIZATION PROBLEM

The fundamental problem of topology optimization deals with the optimal material distribution within a continuum structure subject to a single static loading.

In addition one can assume that the structure is subject to homogeneous boundary conditions on Γ_u .

$$u_i = 0$$
 on Γ_u

□ The principle of virtual work writes

$$\mathbf{u} \in V_0$$
 : $a_E(\mathbf{u}, \mathbf{v}) = l(\mathbf{v}) \quad \forall \mathbf{v} \in V_0$
 $\delta \mathbf{q}^T \mathbf{K} \mathbf{q} = \delta \mathbf{q}^T \mathbf{g}$

A typical topology optimization problem is to find the best subset of the design domain minimizing the volume or alternatively the mass of the structure,

$$V = \int_{\Omega} \
ho({f x}) \ d\Omega$$

- while achieving a given level of functional (mechanical) performance.
- Following Kohn (1988), the problem is well posed from a mathematical point of view <u>if the mechanical behaviour is</u> <u>sufficiently smooth</u>. Typically one can consider :
 - Compliance (energy norm)
 - A certain norm of the displacement over the domain
 - A limitation of the maximum stress

Compliance performance: The mechanical work of the external loads

$$l(\boldsymbol{u}) = \int_{\Omega} \boldsymbol{f}^{T} \boldsymbol{u} \, d\Omega + \int_{\Gamma} \boldsymbol{t}^{T} \, \boldsymbol{u} \, d\Gamma$$

- Using finite element formulation

$$C(\boldsymbol{q}) \ = \ \boldsymbol{g}^T \ \boldsymbol{q}$$

Limitation of a given local stress measure $||\sigma(x)||$ over a subdomain Ω_2 excluding some neighborhood of singular points related to some geometrical properties of the domain (reentrant corners) or some applied loads

$$\sup_{\boldsymbol{x}\in\Omega_2} ||\sigma(\boldsymbol{x})||$$

− Stress measure $||_{\sigma}(x)|| \rightarrow$ Von Mises, Tresca, Tsai-Hill...

- □ The average displacement (according to a selected norm) over the domain or a subdomain Ω_1 excluding some irregular points $\int_{\Omega_1} ||u|| d\Omega$
- If one considers the quadratic norm and if the finite element discretization is used, one reads

$$\int_{\Omega_1} \boldsymbol{u}^T \, \boldsymbol{u} \, d\Omega = \int_{\Omega_1} \boldsymbol{q}^T \boldsymbol{N}(\boldsymbol{x})^T \, \boldsymbol{N}(\boldsymbol{x}) \, \boldsymbol{q} \, d\Omega = \boldsymbol{q}^T \boldsymbol{M} \, \boldsymbol{q}$$

Assuming a lumped approximation of the matrix M, one can find the simplified equivalent quadratic norm of the displacement vector

$$\int_{\Omega_1} ||\boldsymbol{u}|| \, d\Omega \,\approx \, \boldsymbol{q}^T \boldsymbol{q}$$

- The choice of the compliance is generally the main choice by designers.
 - At equilibrium, the compliance is also the strain energy of the structure, so that compliance is the energy norm of the displacements giving rise to a smooth displacement field over the optimized structure.

$$l(\boldsymbol{u}) = a_E(\boldsymbol{u}, \boldsymbol{u}) \qquad \boldsymbol{g}^T \boldsymbol{q} = \boldsymbol{q}^T \boldsymbol{K} \boldsymbol{q}$$

 One can interpret the compliance as the displacement under the loads. For a single local case, it is the displacement under the load.

$$C(\boldsymbol{q}) = \boldsymbol{g}^T \boldsymbol{q} = f_i u_i$$

- The choice of the compliance is generally the main choice of designers.
 - The sensitivity of compliance is easy to calculate. Being self adjoined, compliance is self adjoined, and it does not require the solution of any additional load case.
 - Conversely local stress constraints call for an important amount of additional CPU to compute the local sensitivities.
 - One can find analytical results providing the optimal bounds of composites mixture of materials for a given external strain field. The problem is known as the *G-closure*.

□ Finally the statement of the basic topology problem writes:

$$\min_{\substack{x_i \leq x_i \leq \overline{x}_i \\ \text{s.t.:}}} V(\mathbf{x})$$

$$C(\mathbf{q}) = \mathbf{g}^T \mathbf{q} \leq \bar{C}$$

$$\mathbf{K} \mathbf{q} = \mathbf{g}$$

 Alternatively it is equivalent for a given bounds on the volume and the compliance to solve the minimum compliance subject to volume constraint

> $\min \qquad C(\mathbf{q}) = \mathbf{g}^T \mathbf{q}$ $\underline{x}_i \le x_i \le \overline{x}_i$ s.t.: $V(\mathbf{x}) \le \overline{V}$ $\mathbf{K} \mathbf{q} = \mathbf{g}$

PROBLEM FORMULATION

For several load cases, average compliance

$$\min \qquad \sum_{k} w_{k} \mathbf{g}^{(k) T} \mathbf{q}^{(k)}$$

$$\underline{x}_{i} \leq x_{i} \leq \overline{x}_{i}$$
s.t.:
$$V(\mathbf{x}) \leq \overline{V}$$

$$\mathbf{K} \mathbf{q}^{(k)} = \mathbf{g}^{(k)}$$

- Or better a worst-case approach $\begin{array}{ccc}
 \min & \max_k \mathbf{g}^{(k) T} \mathbf{q}^{(k)} \\
 \underline{x}_i \leq x_i \leq \overline{x}_i \\
 \text{s.t.:} & V(\mathbf{x}) \leq \overline{V} \\
 \mathbf{K} \mathbf{q}^{(k)} = \mathbf{g}^{(k)}
 \end{array}$
 - Where k is load case index, K is the stiffness matrix of FE approximated problem, g_k, and q_k are the load case and generalized displacement vectors for load case k
 - and $\rho(x)$ is the local density and V is the volume

- Minimize compliances.t.
 - Given volume
 - (bounded perimeter)
 - (other constraints)
- Maximize eigenfrequenciess.r.
 - Given volume
 - (bounded perimeter)
 - (other constraints)

- Minimize the maximum of the local failure criteria
- s.t.
- Given volume
- (bounded perimeter)
- (other constraints)

TOPOLOGY OPTIMIZATION USING HOMOGENIZATION VS SIMP BASED TOPOLOGY OPTIMIZATION

TOPOLOGY OPTIMIZATION: FORMULATION

- Well-posed ness of problem?
 Discretised problem is ill-posed
 - Mesh-dependent solutions
 - Recreate microstructures
 - Nonexistence and uniqueness of a solution
- Homogenisation Method:

→ Extend the design space to all porous composites of variable density

 Filter method / Perimeter method / Slope constraints:

→ Restrict the design space by eliminating chattering designs from the design space

HOMOGENIZATION METHOD

- Select one family of microstructures whose geometry is fully parameterized in terms of a set of design variables [Bendsoe and Kikuchi, 1988]
 - G closure : optimal microstructure (full relaxation)
 - Suboptimal microstructures (partial relaxation)
- Use homogenization theory to compute effectives properties: in terms of microstructural geometrical parameters: $E_{ijk} = E^{h}_{ijkl}(a,b,...)$
- Difficult to interpret and fabricate the optimal material distribution as it is

 Revival interest with arrival of cellular structures e.g. lattice structures made by additive manufacturing

POWER LAW MODEL (SIMP)

- Simplified model of a microstructured material with a penalisation of intermediate densities [Bendsoe, 1989]
- Stiffness properties:

$$E = x^{p} E^{0}$$

$$\rho = x \rho^{0}$$

$$0 \le x \le 1 \quad p > 1$$

Strength properties:

$$\sigma_l = x^p \; \sigma_l^0$$

 Modified SIMP should be preferred to avoid singularities

$$E(x) = E_{min} + x^p (E^0 - E_{min})$$

- Can be related to actual micro geometries [Bendsoe and Sigmund, 1999]
- 90% of current topology optimization runs

ALTERNATIVE PARAMETRIZATION TO SIMP

 Alternatively RAMP parameterization (Stolpe & Svanberg, 2001) enables controlling the slope at zero density

$$E(x) = \frac{x}{1+p(1-x)} E^{0}$$

Halpin Tsai (1969)

$$E(x) = \frac{r x}{(1+r) - x} E^0$$

Polynomial penalization (Zhu, 2009):

$$E(x) = \left(\frac{\alpha - 1}{\alpha}x^p + \frac{1}{\alpha}x\right) E^0$$

HOMOGENIZATION METHOD

Penalization of intermediate densities

From anisotropic to isotropic materials

- Investigation of the influence of the selected microstructure upon the optimal topology :
 - 1° orthotropic v.s. isotropy
 - 2° penalization of intermediate properties

SIMP : PENALIZATION OF INTERMEDIATE DENSITIES

SIMP with p=2

SIMP with p=3

POWER LAW MODEL (SIMP)

- Prescribing immediately a high penalization may introduce some numerical difficulties:
 - Optimization problem becomes difficult to solve because of the sharp variation of material properties close to x=1
 - Optimization problem includes a lot of <u>local optima</u> and solution procedure may be trapped in one of these.
- To mitigate these problems, one resorts to the so-called continuation procedure in which p is gradually increased from a small initial value till the desired high penalization.
- Typically:
 - p(0) = 1.6
 - $p(k+1) := p(k) + \Delta p$ after a given number of iterations or when a convergence criteria is OK

FILTERING TECHNIQUES AND MESH INDEPENDENCY STRATEGIES

Two numerical difficulties

- Checkerboard patterns: numerical instabilities related to the inconsistency between the displacement and density fields.
 - Appearance of alternate black-white patterns
 - Checkerboard patterns replaces intermediate densities
- Mesh dependency: the solution depends on the computing mesh.
 - New members appears when refining the mesh
 - Number of holes and structural features is modified when changing the mesh.
 - Stability (and meaning) of solutions?

- Babuska Brezzi conditions of discretization schemes
- Checkerboard free numerical schemes
 - High order FE elements
 - Filtering density field solutions → lower order density fields
 - Perimeter constraint

Solution with checkerboards SIMP with p=2 FE u: degree 1 / Density : constant

FE u: degree 2 / Density : constant

With perimeter constraint

Perimeter < 60

FE u: degree 2

Mesh dependency

- Mesh independent solution: insure mesh independent filtering of lower size details
 - Low pass filter [Sigmund (1998)]

$$\tilde{x}_e = \frac{\sum_{i \in N_e} w_i(X) v_i x_i}{\sum_i w_i(X_i) v_i}$$

- Perimeter constraint [Ambrosio & Butazzo (1993)]

 $\min_{\substack{0 \le \rho(\boldsymbol{x}) \le 1}} \quad \boldsymbol{g}^{T} \boldsymbol{q} \\
\text{s.t.} \quad P(\rho(\boldsymbol{x})) \le \bar{P} \\
\quad V = \int_{\Omega} \rho(\boldsymbol{x}) \, d\Omega \le \bar{V} \\
\quad g_{j}(\boldsymbol{x}) \le \bar{g}_{j} \qquad j = 1 \dots m$

Mesh independency

PERIMETER METHOD

Continuous version of perimeter measure

$$P(\rho) = \int_{\Omega} ||\nabla \rho|| d\Omega + \int_{\Gamma_j} |[\rho]|_j \ d\Gamma$$

- With the gradient of the density field and the jump []_j of the density across discontinuity surfaces j
- The continuous approximation of the modulus of the gradient

$$\begin{split} P(\rho) \simeq \int_{\Omega} \sqrt{\nabla \rho^T \nabla \rho} + \frac{\varepsilon^2}{h^2} - \frac{\varepsilon}{h} \ d\Omega \\ + \int_{\Gamma_j} \sqrt{[\rho]_j^2 + \varepsilon^2} - \varepsilon \ d\Gamma \end{split}$$

 \mathcal{X}

PERIMETER METHOD

- The structural complexity of the structure is controlled with a bound over the perimeter
- An efficient numerical strategy has been elaborated to cater with the difficult perimeter constraint (Zhang & Duysinx, 1998)

- To avoid mesh dependency and numerical instabilities like checkerboards patterns, one approach consists in restricting the design space of solutions by forbidding high frequency variations of the density field.
- Basic filtering by Bruns and Tortorelli (2001), proven by Bourdin (2001)

$$\tilde{x}_e = \frac{\sum_{i \in N_e} w_i(X) v_i x_i}{\sum_i w_i(X_i) v_i}$$

$$N_e = \{i \mid ||\mathbf{X}_i - \mathbf{X}_e|| \le R\}$$

$$w_i(\mathbf{X}_i) = \begin{cases} R - ||\mathbf{X}_i - \mathbf{X}_e|| & i \in N_e \\ 0 & i \notin N_e \end{cases}$$

- Other weighting functions
 - Gaussian

$$w(\mathbf{X}_i) = \exp\left[-\frac{1}{2}\left(\frac{||\mathbf{X}_i - \mathbf{X}_e||}{\sigma_d}\right)^2\right]$$

ant

- Constant

$$w(\mathbf{X}_i) = 1$$

 Density filter is equivalent to solving a Helmotz equation Lazarov et al.

$$-R_{\min} \nabla^2 \bar{\delta} + \bar{\delta} = \delta$$

 $\hfill \Box$ With the following Neuman boundary conditions

$$\frac{\partial \bar{\delta}}{\partial n} = 0$$

Historically Ole Sigmund (1994, 1997) introduced a filter of the sensitivities

$$\frac{\partial \tilde{f}}{\partial x_e} = \frac{\sum_{i \in N_e} w(\mathbf{X}_i) x_i \frac{\partial f}{\partial x_i}}{x_e \sum_{i \in N_e} w(\mathbf{X}_i)}$$

□ with

$$w(\mathbf{X}_i) = R - ||\mathbf{X}_i - \mathbf{X}_e||$$

□ For non uniform meshes, Sigmund proposed to use

$$\frac{\partial \tilde{f}}{\partial x_e} = \frac{\sum_{i \in N_e} w(\mathbf{X}_i) \frac{x_i}{v_i} \frac{\partial f}{\partial x_i}}{\frac{x_e}{v_e} \sum_{i \in N_e} w(\mathbf{X}_i)}$$

 The smoothed sensitivities correspond to the sensitivities of a smoothed version of the objective function (as well as the constraints)

 $\tilde{\rho}(r_{fil} = 8) \qquad \tilde{\rho}(r_{fil} = 15)$

 $\tilde{\rho}(r_{fil}=8)$

$$\tilde{\rho}(r_{fil} = 15)$$

a) (b)
(d) (e)
$$\sim^{p} \Gamma$$

 $E_i = \tilde{\rho}_i^p E_0$

 $E_i = \rho_i^p E_0$

 $E_i = \tilde{\rho}_i^p E_0$

 $\tilde{\rho}(r_{fil}=8)$

 $\tilde{\rho}(r_{fil} = 15)$

a) (b)
(d) (e)
$$E_i = \tilde{\rho}_i^p E_0$$

$$E_i = \rho_i^p E_0$$

 $E_i = \tilde{\rho}_i^p E_0$

- Mesh dependent
- Checkerboard
- Non-Discrete
 Solut.

□ To obtain 0/1 solutions , Guest et al. (2014) modifies the density filter with a Heaviside function such that if $x_e > 0$, the Heaviside gives a physical value of the density equal to '1' and if the $x_e=0$, the Heaviside gives a density '0'

- □ To obtain 0/1 solutions , Guest et al. (2014) modifies the density filter with a Heaviside function such that if $x_e > 0$, the Heaviside gives a physical value of the density equal to '1' and if the $x_e = 0$, the Heaviside gives a density '0'
- Heaviside smooth approximation

$$\hat{\rho}_i = \begin{cases} 1 & \text{if } \tilde{\rho}_i > 0\\ 0 & \text{otherwise} \end{cases}$$
$$\hat{\rho}_i = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1$$

- For $\beta \rightarrow 0$, the filter gives the original filter
- For $\beta \rightarrow$ infinity, the function reproduces the max operator, that is the density becomes 1 if there is any element in the neighborhood that is non zero.

– For $\beta \rightarrow 0$, the filter gives the original filter

- For $\beta \rightarrow$ infinity, the function reproduces the max operator, that is the density becomes 1 if there is any element in the neighborhood that is non zero. 0

Heaviside smooth approximation

$$\hat{\rho}_i = \begin{cases} 1 & \text{if } \tilde{\rho}_i > 0\\ 0 & \text{otherwise} \end{cases}$$
$$\hat{\rho}_i = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + \tilde{\rho}_i \ e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1 - e^{-\beta \tilde{\rho}_i} + 1 - e^{-\beta \tilde{\rho}_i} = 1$$

- Mesh dependent
- Checkerboard
- Non-Discrete Solution
- Need of continuation / Large number of iterations (>100) 50

Heaviside function can be extended (Wang, Lazarov, Sigmund, 2011) to control minimum and maximum length scale

$$\hat{x}_e = \frac{\tanh(\beta \eta) + \tanh(\beta (\tilde{x}_e - \eta))}{\tanh(\beta \eta) + \tanh(\beta (1.0 - \eta))}$$
51

□ Heaviside function enables a control of manufacturing tolerant designs → robust design

THE THREE FIELD APPROACH

Combining density filtering and Heaviside filter give rise to the so called three field topology optimization scheme proposed by Wang et al. (2011), one uses a design field, a filtered field and a physical field whose relations are defined though the following filter and thresholding processes

- Filtering

$$\tilde{x}_e = \frac{\sum_{i \in N_e} w_i(X) v_i x_i}{\sum_i w_i(X_i) v_i}$$

Heaviside

$$\hat{x}_e = \frac{\tanh(\beta \eta) + \tanh(\beta (\tilde{x}_e - \eta))}{\tanh(\beta \eta) + \tanh(\beta (1.0 - \eta))}$$

SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS

- Study of the derivatives of the structure under linear static analysis when discretized by finite elements.
- The study is carried out for one load case, but it can be easily extended to multiple load cases.
- Equilibrium equation of the discretized structure:

$$\mathbf{K}\,\mathbf{q}~=~\mathbf{g}$$

- **q** generalized displacement of the structure
- K stiffness matrix of the structure discretized into F.E.
- generalized load vector consistent with the F.E. discretization

- $\hfill\square$ Let ${\bf x}$ be the vector of design variables in number n.
- The differentiation of the equilibrium equation yields the sensitivity of the generalized displacements:

□ The right-hand side term is called pseudo load vector

$$\tilde{g}_i = rac{\partial g}{\partial x_i} - rac{\partial K}{\partial x_i} q$$

Physical interpretation of the pseudo load (Irons): load that is necessary to re-establish the equilibrium when perturbating the design.

SENSITIVITY ANALYSIS

- A central issue is the calculation of the derivatives of the stiffness matrix and of the load vector.
- In some cases the structure of the stiffness matrix makes it easy to have the sensitivity of the matrix with respect to the design variable
- In topology optimization using SIMP model:

$$E = x^p E^0$$

The stiffness matrix

$$\mathbf{K}_e = x_e^p \, \bar{\mathbf{K}}_e$$

And its derivatives

$$\frac{\partial \mathbf{K}_e}{\partial x_e} = p \, x_e^{p-1} \, \bar{\mathbf{K}}_e$$

SENSITIVITY OF COMPLIANCE

□ The compliance is defined as the work of the applied load.

$$C = g^T q$$

□ It is equal to the twice the deformation energy

$$C = g^T q = q^T K q$$

□ The derivative of the compliance constraint gives:

$$\frac{dC}{dx_i} = \frac{\partial g^T}{\partial x_i} q + g^T \frac{\partial q}{\partial x_i}$$

Introducing the value of the derivatives of the generalized displacements: $\partial_{\mathbf{q}} = \partial_{\mathbf{K}}$

$$\frac{\partial \mathbf{q}}{\partial x_i} = \mathbf{K}^{-1} \left\{ \frac{\partial \mathbf{g}}{\partial x_i} - \frac{\partial \mathbf{K}}{\partial x_i} \mathbf{q} \right\}$$
$$\frac{dC}{dx_i} = \frac{\partial \mathbf{g}^T}{\partial x_i} \mathbf{q} + \mathbf{g}^T \mathbf{K}^{-1} \left\{ \frac{\partial \mathbf{g}}{\partial x_i} - \frac{\partial \mathbf{K}}{\partial x_i} \mathbf{q} \right\}$$

58

SENSITIVITY OF COMPLIANCE

□ The expression of the sensitivity of the compliance writes

$$\begin{split} \frac{dC}{dx_i} &= \frac{\partial \mathbf{g}^T}{\partial x_i} \,\mathbf{q} + \,\mathbf{g}^T \,\mathbf{K}^{-1} \left\{ \frac{\partial \mathbf{g}}{\partial x_i} - \frac{\partial \mathbf{K}}{\partial x_i} \,\mathbf{q} \right\} \\ &= \frac{\partial \mathbf{g}^T}{\partial x_i} \,\mathbf{q} + \,\mathbf{q}^T \left\{ \frac{\partial \mathbf{g}}{\partial x_i} - \frac{\partial \mathbf{K}}{\partial x_i} \,\mathbf{q} \right\} \\ &\frac{dC}{dx_i} = -q^T \,\frac{\partial K}{\partial x_i} \,q + 2 \,\frac{\partial g^T}{\partial x_i} \,q \end{split}$$

Generally the load vector derivative is zero (case of no body load), it comes:

$$\frac{dC}{dx_i} = -q^T \frac{\partial K}{\partial x_i} q$$

NUMERICAL SOLUTION OF TOPOLOGY PROBLEMS USING GRADIENT BASED MATH PROGRAMMING

NUMERICAL SOLUTION OF TOPOLOGY OPTIMIZATION PROBLEMS

- Optimal material distribution = very large scale problem
 - Large number of design variables: 1 000 \rightarrow 100 000
 - Number of restrictions:
 - \Box 1 \rightarrow 10 (for stiffness problems)
 - $_{\mbox{\tiny D}}$ 1 000 \rightarrow 10 000 (for strength problem with local constraints)
- Solution approach based on the sequential programming approach and mathematical programming
 - Sequence of convex separable problems based on structural approximations
 - Efficient solution of sub problems based on dual maximization
- Major reduction of solution time of optimization problem
- Generalization of problems that can be solved

SEQUENTIAL CONVEX PROGRAMMING APPROACH

Direct solution of the original optimisation problem which is generally non-linear, implicit in the design variables

 $\min_{\boldsymbol{x}} \quad g_0(\boldsymbol{x})$ s.t. $g_j(\boldsymbol{x}) \leq \bar{g}_j \quad j = 1 \dots m$

is replaced by a sequence of optimisation sub-problems

$$\min_{\boldsymbol{x}} \quad \tilde{g}_0(\boldsymbol{x})$$

s.t.
$$\tilde{g}_j(\boldsymbol{x}) \leq \bar{g}_j \qquad j = 1 \dots m$$

by using approximations of the responses and using powerful mathematical programming algorithms

SEQUENTIAL CONVEX PROGRAMMING APPROACH

- Two basic concepts:
 - Structural approximations replace the implicit problem by an explicit optimisation sub-problem using convex, separable, conservative approximations; e.g. CONLIN, MMA
 - Solution of the convex sub-problems: efficient solution using dual methods algorithms or SQP method.
- Advantages of SCP:
 - Optimised design reached in a reduced number of iterations: typically <u>100 F.E. analyses</u> in topology optimization
 - Efficiency, robustness, generality, and flexibility, small computation time
 - Large scale problems in terms of number of design constraints and variables

Linear approximation and Sequential Linear Programming

□ Linear approximation = first order Taylor expansion around x^0 :

$$\tilde{g}_j(\boldsymbol{x}) = g_j(\boldsymbol{x}^{\mathbf{o}}) + \sum_{i=1}^n \frac{\partial g(\boldsymbol{x}^{\mathbf{o}})}{\partial x_i} (x_i - x_i^0)$$

When linear approximation is applied to each function of the problem, one transforms the problem into a sequence of linear programming problems (SLP):

$$\min_{x_i} \quad g_0(\boldsymbol{x}^{\mathbf{o}}) + \nabla g_0(\boldsymbol{x}^{\mathbf{o}})^T (\boldsymbol{x} - \boldsymbol{x}^{\mathbf{o}})$$

s.t.
$$g_j(\boldsymbol{x}^{\mathbf{o}}) + \nabla g_j(\boldsymbol{x}^{\mathbf{o}})^T (\boldsymbol{x} - \boldsymbol{x}^{\mathbf{o}}) \leq 0$$
$$\underline{x}_i \leq x_i \leq \bar{x}_i$$

SEQUENTIAL LINEAR PROGRAMMING METHOD

The current design point is $x^{(k)}$. Using the first order Taylor expansion of f(x), $h_j(x)$, we can get a linear approximation of the NL problem in $x^{(k)}$:

$$\min_{\boldsymbol{x}} \quad f(\boldsymbol{x}^{(k)}) + (\boldsymbol{x} - \boldsymbol{x}^{(k)})^T \nabla f(\boldsymbol{x}^{(k)})$$

s.t.
$$h_j(\boldsymbol{x}^{(k)}) + (\boldsymbol{x} - \boldsymbol{x}^{(k)})^T \nabla h_j(\boldsymbol{x}^{(k)}) \leq 0 \quad j = 1 \dots q$$

 $\underline{x}_i \leq x_i \leq \overline{x}_i \quad i = 1, \dots, n$

Solving this LP problem, we get a new point in $x^{(k+1)}$ and start again.

DOESN'T WORK!

SEQUENTIAL LINEAR PROGRAMMING METHOD

MOVE LIMIT STRATEGY

 Introduce a box constraint around the current design point to limit the variation domain of the design variables

 $\hat{x}_i - \alpha_i \leq x_i \leq \hat{x}_i + \beta_i$

□ Of course take the most restrictive constraints with the $\max\{\underline{x}_i, \hat{x}_i - \alpha_i\} \le x_i \le \min\{\overline{x}_i, \hat{x}_i + \beta_i\}$

STRUCTURAL APPROXIMATIONS

Convex Linearisation (CONLIN)

$$\tilde{g}_j(\boldsymbol{x}) = g_j(\boldsymbol{x}^{\mathbf{o}}) + \sum_{+} \frac{\partial g_j}{\partial x_i} (x_i - x_i^0) - \sum_{-} (x_i^0)^2 \frac{\partial g_j}{\partial x_i} (\frac{1}{x_i} - \frac{1}{x_i^0})$$

Method of Moving Asymptotes (MMA)

$$\tilde{g}_j(\boldsymbol{x}) = r_j^0 + \sum_{i=1}^n \frac{p_{ij}}{U_i - x_i} + \sum_{i=1}^n \frac{q_{ij}}{x_i - L_i}$$

$$p_{ij} = \max\{0, (U_i - x_i^0)^2 \frac{\partial g_j}{\partial x_i}\}$$
$$q_{ij} = \max\{0, -(x_i^0 - L_i)^2 \frac{\partial g_j}{\partial x_i}\}$$

CONLIN approximation

Approximation of the strain energy in a two plies symmetric laminate subject to shear load and torsion (Bruyneel and Fleury, 2000)

MMA approximation

Approximation of the strain energy in a two plies symmetric laminate subject to shear load and torsion (Bruyneel and Fleury, 2000)

DUAL METHODS

Primal problem

$$\min_{\boldsymbol{x}} \quad f(\boldsymbol{x}) \\ \text{s.t.} \quad g_j(\boldsymbol{x}) \leq 0 \qquad j = 1, \dots, m$$

□ Lagrange function:

$$L(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) + \sum_{j=1}^{m} \lambda_j g_j(\boldsymbol{x})$$

□ If the problem is convex...

$$\min_{\mathbf{x}} \max_{\lambda \ge 0} L(\mathbf{x}, \lambda) \iff \max_{\lambda \ge 0} \min_{\mathbf{x}} L(\mathbf{x}, \lambda)$$

DUAL METHODS

Dual problem

$$\max_{\substack{\lambda_j \\ \text{s.t.}}} \ell(\lambda)$$

s.t. $\lambda_j \ge 0$ $j = 1, \dots, m$

– with

$$\ell(\lambda) = \min_{\boldsymbol{x} \in X} L(\boldsymbol{x}, \lambda)$$

Solve Lagrangian problem

$$\boldsymbol{x} = \boldsymbol{x}(\lambda) = \arg\min_{\boldsymbol{x}} L(\boldsymbol{x},\lambda)$$

Lagrangian problem

$$\ell(\lambda) = L(\boldsymbol{x}(\lambda), \lambda)$$

= $f(\boldsymbol{x}(\lambda)) + \sum_{j=1}^{m} \lambda_j g_j(\boldsymbol{x}(\lambda))$ 71

NUMERICAL APPLICATIONS OF COMPLIANCE MINIMIZATION BASED TOPOLOGY OPTIMIZATION
Optimization of a maximum stiffness bicycle frame

Design of a Crash Barrier Pillar (SOLLAC)

Design of a Crash Barrier Pillar (SOLLAC)

Topology Optimization of a Parasismic Building (DOMECO)

3D cantilever beam problem

E=100 N/m², v=0.3 20 x 32 x 4 = 2560 F.E.s

No perimeter constraint ⁷⁷

3D cantilever beam problem

Perimeter = 1000 78

An industrial application: Airbus engine pylon

- □ Application
 - carried out by SAMTECH and ordered by AIRBUS
- Engine pylon
 - = structure fixing engines to the wing
- Initial Model
 - CATIA V5 import → Samcef Model
 - BC's: through shell and beam FE
 - 10 load cases:
 - □ GUSTS
 - FBO (Fan blade out)
 - WUL (Without undercarriage landing)

Over 250.000 tetraedral FE

An industrial application: Airbus engine pylon

- □ Target mass: 10%
- Additional constraints:
 Engine CoG position
- Optimization parameters
 - Sensitivity filtering: (Sigmund's filter)
 - Symmetry (left right) condition
 - Penalty factor
- CONLIN optimizer: special version for topology optimization

Sensitivities filtering

Penalty factor from 2 to 4

Airbus engine pylon

With courtesy by Samtech and Airbus Industries

Airbus engine pylon

Sandwich panel optimization

□ Geometry of the sandwich panel reinforcement problem

Optimal topolog

Sandwich panel optimization

□ Geometry of the sandwich panel reinforcement problem

Optimal topology

PLATE AND SANDWICH PLATE MODELS

USING SIMP MODEL FOR TOPOLOGY OPTIMISATION OF PLATES AND SHELLS

PHYSICAL MEANING OF DENSITY VARIABLE:

PROTOTYPE CAR BODY OPTIMIZATION

- □ Load case 1: bending
 - Self weight
 - Components (20 kg)
 - Pilot (50 kg)
 - Roll over load (70 kg on top of roll cage)

(Figures from Happian-Smith)

- Load case 2: torsion + bending
 = curb impact
 - Rear axle clamped
 - Right front wheel free supported
 - Left front wheel withstanding 3 times the weight of the axle

DESIGN OF A URBAN CONCEPT STRUCTURE

- Topology optimization of the truss structure
 - Target mass of 15 kg
 - Minimum compliance
 - Mostly determined by load case 2 (torsion)
 - SIMP material with p=3
 - Left / right symmetry of material distribution
 - Filtering

DESIGN OF AN URBAN CONCEPT STRUCTURE

🗣 Topology Optimization / Dim042. dat 12 / 12	
File Tools Settings	
Options Static Analysis Uitual LoadCases	Post-Processing Options
Modal Analysis 3 Number of Modes	Our Phi
✓ Initial Run	Curve Plot
12 Number of Iterations Restart after Iteration 12	
3 Penalty V Progressive 01 Xmin 20 # Elts Filter 20 • None	
0.2 Fraction 0. Omin Mono Objective CXCYCZ	
Edit Model Start TOPOL View Results	Cancel
+ End of program	Compliand Const
+	
12:11	0,002405
Running Samfac Dim042 top.des/fac Created	
+	3.02584E-09
! Creating Post-Processing Files Dim042 +==================================	
Running bacon on problem Dim042	
Post-Processing DimU42 Purge Dim042 with density 50 / MKVRML	2.69968E-09
Running SAMRES	
# Read Elements Mass (Cpu 0.0 - Elaps	
# Read Elements Densities (Cpu 0.0 - Elaps #	2.35752E+09
# Filter Elements density lower than 50 %	
# Total of 6965 Elements # Demovring 5519 Elements	
# Remaining 83.5 % Mass	
# < 10.0% Elements : 4529 4529 # < 20.0% Elements : 494 5023	
# < 30.0% Elements : 295 5318	168322.09
# < 40.0% Elements : 130 5448 # < 50.0% Elements : 71 5519	
# < 60.0% Elements : 73 5592	
# < 70.0% Elements : 63 5655 # < 80.0% Elements : 66 5721	1.35504E+09
# < 90.0% Elements : 62 5783	
# <100.0% klements : 1182 6965	
# Read SDB (Cpu 0.1 - Elaps # Demons Riemonts (Cpu 0.1 - Flaps	1020892-09
# Exporting VRML data (1) (Cpu 0.1 - Elaps	
-> File : "Dim042.wrl" f Save & Ouit. (Cnu 0 1 - Elens	5.6572F-08
# End (Cpu 0.1 - Elaps	
Running BACON Running TOPOL	
# Exporting VRML data (2)	3,5256E-08
# End (Cpu 0.6 - Elaps	
End of process	
Ended at 02-13-2007 12:11:35	
×	
Gennani en Topology Optimizatio	S 13:00

Convergence history

DESIGN OF AN URBAN CONCEPT STRUCTURE

DESIGN OF AN URBAN CONCEPT STRUCTURE

9

VIBRATION PROBLEMS

NATURAL VIBRATION PROBLEMS

Finite element discretization of the system

$$\mathbf{u}(X) = \mathbf{N}(X) \mathbf{q}$$
$$\epsilon(X) = \partial \mathbf{N}(X) \mathbf{q} = \mathbf{B}\mathbf{q}$$
$$\sigma = \mathbf{H} \epsilon = \mathbf{H} \mathbf{B} \mathbf{q} = \mathbf{T} \mathbf{q}$$

□ Kinetic energy

$$\mathcal{K} = \frac{1}{2} \int_{\Omega} \rho \, \dot{\mathbf{u}}^T \, \dot{\mathbf{u}} d\Omega = \frac{1}{2} \dot{\mathbf{q}}^T \, \mathbf{M} \, \dot{\mathbf{q}} \qquad \mathbf{M} = \int_{\Omega} \mathbf{N}^T \mathbf{N} \rho \, d\Omega$$

□ Strain energy

$$\mathcal{U} = \frac{1}{2} \int_{\Omega} \sigma^{T} \epsilon \ d\Omega = \frac{1}{2} \mathbf{q}^{T} \mathbf{K} \mathbf{q} \qquad \qquad \mathbf{K} = \int_{\Omega} \mathbf{B}^{T} \mathbf{H} \mathbf{B} \ d\Omega$$

NATURAL VIBRATION PROBLEMS

Hamilton principle

$$\delta \int_{t_1}^{t_2} \mathcal{K} - \mathcal{U} \, dt = 0$$

Dynamic equation of the system

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \mathbf{g}(t)$$

□ Free vibrations : assume periodic solutions

$$\mathbf{q}(t) = \mathbf{q} \, e^{i\omega t}$$

Nontrivial solutions are solutions of the eigenvalue problem

$$-\omega^2 \mathbf{M} \mathbf{q} + \mathbf{K} \mathbf{q} = \mathbf{0}$$

NATURAL VIBRATION PROBLEMS

Eigenvalue problem

$$\left(\mathbf{K} - \omega^2 \mathbf{M}\right) \ \mathbf{q} = \mathbf{0}$$

Rayleigh ratio

$$\omega_{min}^2 = \min_{\mathbf{q}} \; \frac{\mathbf{q}^T \mathbf{K} \mathbf{q}}{\mathbf{q}^T \mathbf{M} \mathbf{q}}$$

DESIGN PROBLEM FORMULATION

 $\Box \quad Fundamental topology optimization problem of vibrating structures \\ \min \quad \omega_{min}^2$

 $\begin{array}{ll} \min_{\mathbf{x}} & \omega_{min}^2 \\ \text{s.t.} & V = \int_{\Omega} \rho \ d\Omega \leq \bar{V} \\ & (\mathbf{K} - \omega_{min}^2 \mathbf{M}) \mathbf{q} = \mathbf{0} \end{array}$

To avoid mode crossing, it is better to select several eigenvalues and to maximize the minimum of the first NF frequencies

$$\max_{\mathbf{x}} \quad \min_{k=1...NF} \omega_k^2$$

s.t.
$$V = \int_{\Omega} \rho \ d\Omega \le \bar{V}$$
$$(\mathbf{K} - \omega_k^2 \mathbf{M}) \mathbf{q}_k = \mathbf{0}$$

DESIGN PROBLEM FORMULATION

- However, the fact that both mass and stiffness depends on the density design variables, the trivial solution 0=0 is feasible.
- Therefore, best eigenfrequency design problem is formulated as a reinforcement problem, i.e. there exist some non design mass or stiffness

$$\begin{split} \min_{\mathbf{x}} & \omega_{min}^2 \\ \text{s.t.} & V = \int_{\Omega} \rho \ d\Omega \leq \bar{V} \\ & ([\mathbf{K} + \mathbf{K}_0] - \omega_{min}^2 [\mathbf{M} + \mathbf{M}_0]) \mathbf{q} = \mathbf{0} \\ & \omega_{min}^2 = \min_{\mathbf{q}} \ \frac{\mathbf{q}^T [\mathbf{K} + \mathbf{K}_0] \mathbf{q}}{\mathbf{q}^T [\mathbf{M} + \mathbf{M}_0] \mathbf{q}} \end{split}$$
 Masses non structurales
 b Structure primaire
 b Domaine de conception

REINFORCEMENT DESIGN PROBLEM

- Topology optimization of sheet of steel:
 - Basic sheet: t=1mm
 - Reinforcement sheet t=1mm

Π

REINFORCEMENT DESIGN PROBLEM

- Topology optimization of sheet of steel:
 - Basic sheet: t=1mm
 - Reinforcement sheet t=1mm

Mode propre	Fréquences propres avant optimisation (Hz)	Fréquences propres après optimisation (Hz)
1	26,89	52,11
2	43,89	88,26
3	540,03	820,98
4	817,92	1394,22
5	860,40	1583,39

SENSITIVITY OF EIGENVALUE PROBLEMS

- Eigenvalue problem
 - K stiffness matrix, M mass matrix
 - **q** the eigenmode vector
 - And ω the eigenfrequency

$$\left(\mathbf{K} \,-\, \omega^2 \, \mathbf{M}
ight) \, \mathbf{q} \,=\, \mathbf{0}$$

 The magnitude of the modes is arbitrary, so they are normalized according to a given matrix W (generally the mass matrix M)

$$\mathbf{q}^T \, \mathbf{W} \, \mathbf{q} \, = \, 1$$

 At first let's consider the simplified approach: we assume that all eigenvalues are distinct and ordered from the smallest to the largest:

100

SENSITIVITY OF EIGENVALUE PROBLEMS

Let's differentiate the eigenvalue equation

$$\left(\mathbf{K} - \omega_{(k)}^2 \mathbf{M}\right) \frac{\partial \mathbf{q}^{(k)}}{\partial x_i} = \frac{\partial \omega_{(k)}^2}{\partial x_i} \mathbf{M} \mathbf{q}^{(k)} - \left(\frac{\partial \mathbf{K}}{\partial x_i} - \omega_{(k)}^2 \frac{\partial \mathbf{M}}{\partial x_i}\right) \mathbf{q}^{(k)}$$

Differentiating the normalization equation gives

$$\mathbf{q}^{(k) T} \mathbf{W} \frac{\partial \mathbf{q}^{(k)}}{\partial x_i} = -\frac{1}{2} \mathbf{q}^{(k)T} \frac{\partial \mathbf{W}}{\partial x_i} \mathbf{q}^{(k)}$$

To obtain the derivatives of the eigenvalue $\lambda^{(k)}$, one has to premultiply the first equation by the eigenmode $q^{(k)}$

$$\mathbf{q}^{(k) T} \left[\left(\mathbf{K} - \omega_{(k)}^2 \mathbf{M} \right) \frac{\partial \mathbf{q}^{(k)}}{\partial x_i} - \frac{\partial \omega_{(k)}^2}{\partial x_i} \mathbf{M} \mathbf{q}^{(k)} + \left(\frac{\partial \mathbf{K}}{\partial x_i} - \omega_{(k)}^2 \frac{\partial \mathbf{M}}{\partial x_i} \right) \mathbf{q}^{(k)} = \mathbf{0} \right]$$

SENSITIVITY OF EIGENVALUE PROBLEMS

 \Box Since $q^{(k)}$ is an eigenmode

$$\mathbf{q}^{(k)T}\left(\mathbf{K}-\omega_{(k)}^{2}\mathbf{M}
ight)=\mathbf{0}$$

□ And one gets

$$-\left(\mathbf{q}^{(k)T}\mathbf{M}\mathbf{q}^{(k)}\right) \, \frac{\partial \omega_{(k)}^2}{\partial x_i} \, + \, \mathbf{q}^{(k)T} \left(\frac{\partial \mathbf{K}}{\partial x_i} - \omega_{(k)}^2 \frac{\partial \mathbf{M}}{\partial x_i}\right) \mathbf{q}^{(k)} = \mathbf{0}$$

With the scaling factor

$$m^{(k)} = \mathbf{q}^{(k)T} \mathbf{M} \mathbf{q}^{(k)}$$

We finally obtain the final expression of the sensitivity of the eigen values:

$$\frac{\partial \omega_{(k)}^2}{\partial x_i} = \frac{1}{m^{(k)}} \left(\mathbf{q}^{(k)T} \frac{\partial \mathbf{K}}{\partial x_i} \mathbf{q}^{(k)} - \omega_{(k)}^2 \mathbf{q}^{(k)T} \frac{\partial \mathbf{M}}{\partial x_i} \mathbf{q}^{(k)} \right)$$

- Topology optimization of vibrating structures presents a major difficulty:
 - Appearance of dummy eigenmodes, i.e. local modes with zero frequency
- Require special strategy
 - Modification of material interpolation → modified SIMP or RAMP
 - Filtering the dummy modes

Illustration using a numerical example

- □ T=1e-3 m
- □ Interpolation law: SIMP p=3
- □ Max volume= 80%
- Design domain = Support only

Illustration using a numerical example

- □ Material : Steel E=210 Gpa, v=0.3, $\rho=7800$ kg/m³
- □ T=1e-3 m
- □ Interpolation law: SIMP p=3
- □ Max volume= 80%
- Design domain = Support only

106

 \square Convergence broken after 4 iterations when SIMP p=4

f2 = 1.2247 Hz

f4 = 1.2984

Low frequency modes are present in low density regions

$$\omega_{min}^{2} = \min_{\mathbf{q}} \frac{\mathbf{q}^{T} \mathbf{K} \mathbf{q}}{\mathbf{q}^{T} \mathbf{M} \mathbf{q}} = \frac{x^{p} E_{0}}{x \rho_{0}} \frac{\mathbf{q}^{T} \mathbf{K}_{0} \mathbf{q}}{\mathbf{q}^{T} \mathbf{M}_{0} \mathbf{q}}$$
$$= x^{p-1} \frac{E_{0}}{\rho_{0}} \frac{\mathbf{q}^{T} \mathbf{K}_{0} \mathbf{q}}{\mathbf{q}^{T} \mathbf{M}_{0} \mathbf{q}}$$
$$\omega_{min}^{2} = x^{p-1} \frac{E_{0}}{\rho_{0}} \frac{\mathbf{q}^{T} \mathbf{K}_{0} \mathbf{q}}{\mathbf{q}^{T} \mathbf{M}_{0} \mathbf{q}} \to 0 \quad \text{if} \quad x \to 0$$

 $\hfill\square$ Modify SIMP to give a lower bound in low density to the ratio E/ ρ

$$E = \min(E_{min}, x^p E_0)$$

- Modified SIMP

$$E = E_{min} + x^p \left(E_0 - E_{min} \right)$$
DIFFICULTIES IN VIBRATION PROBLEMS

Ignore / filter eigenmodes which are not significant

- Selection criteria: generalized mass \rightarrow local character of the mode

$$\mu^{(k)} = \mathbf{q}^{(k)T} \mathbf{M} \mathbf{q}^{(k)}$$

Mode	Fréquence propre (Hz)	Energie cinétique µ (m² kg)	Rapport à l'énergie cinétique maximale
1	0,9821	1,907E-1	1,3810E-3
2	1,2271	1,3823E-1	9,6902E-4
3	1,2618	1,4265E+2	1,0
4	1,2814	9,8634E-1	6,9144E-4
5	1,3264	1,6051E-1	1,0946E-3