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INTRODUCTION
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What is topology?
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STRUCTURAL & MULTIDISCIPLINARY 
OPTIMISATION

TYPES OF VARIABLES

– a/ Sizing

– b/ Shape 

– c/ Topology

– (d/ Material)

TYPES OF OPTIMISATION

– structural

– multidisciplinary

structural

aerodynamics,

thermal,

manufacturing



Topology optimization

One generally distinguishes two approaches of topology 
optimization:

– Topology optimization of naturally discrete structures (e.g. 
trusses)

– Topology optimization of continuum structures (eventually 
after FE discretization)
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Why topology optimization?

CAD approach does not allow topology modifications

A better morphology by 
topology optimization 

(Duysinx, 1996)

Zhang et al. 1993
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TOPOLOGY PROBLEM  
FORMULATION
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TOPOLOGY OPTIMIZATION FORMULATION

Abandon CAD model description 
based on boundary description

Optimal topology is given by an 
optimal material distribution problem

Search for the indicator function of 
the domain occupied by the material

The physical properties write

The problem is intrinsically a binary 
0-1 problem ➔ solution is extremely 

difficult to solve
9



MATERIAL DENSITY FUNCTION

Avoid 0/1 problem and replace by a 
continuous approximation considering a 
variable density material running from void 
(0) to solid (1)

– Homogenization law of mechanical 
properties a porous material for any 
volume fraction (density) of materials

– Mathematical interpolation and 
regularization

SIMP model 
RAMP

Penalization of intermediate densities to end-
up with black and white solution

Efficient solution of optimization problem 
based on sensitivity analysis and gradient 
based mathematical programming algorithms

0* EE p=
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IMPLEMENTION OF MATERIAL DENSITY FUNCTION

Implementation of material 
density approach is rather easy:

– Fixed mesh

– Design variables are element 
or nodal densities

– Similar to sizing problem

– SIMP law is easy to code

– Sensitivity of compliance is 

cheap

– Use efficient gradient based 

optimization algorithms as 

MMA
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A FIRST EXAMPLE: GENESIS OF A STRUCTURE 

12E. Lemaire, PhD Thesis, Uliege, 2013



TOPOLOGY OPTIMIZATION 
AS A 

COMPLIANCE MINIMIZATION 
PROBLEM
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DESIGN PROBLEM FORMULATION

The fundamental problem of topology optimization deals with 
the optimal material distribution within a continuum structure 
subject to a single static loading.

In addition one can assume that 

the structure is subject to homogeneous

boundary conditions on Gu.

The principle of virtual work writes
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DESIGN PROBLEM FORMULATION

A typical topology optimization problem is to find the best 
subset of the design domain minimizing the volume or 
alternatively the mass of the structure, 

while achieving a given level of functional (mechanical) 
performance.  

Following Kohn (1988), the problem is well posed from a 
mathematical point of view if the mechanical behaviour is 
sufficiently smooth. Typically one can consider :

– Compliance (energy norm)

– A certain norm of the displacement over the domain

– A limitation of the maximum stress
15



DESIGN PROBLEM FORMULATION

Compliance performance: The mechanical work of the external 
loads

– Using finite element formulation

Limitation of a given local stress measure ||s(x)|| over a sub-
domain W2 excluding some neighborhood of singular points 
related to some geometrical properties of the domain (reentrant 
corners) or some applied loads

– Stress measure ||s(x)|| → Von Mises, Tresca, Tsai-Hill…
16



DESIGN PROBLEM FORMULATION

The average displacement (according to a selected norm) over 
the domain or a subdomain W1 excluding some irregular points

If one considers the quadratic norm and if the finite element 
discretization is used, one reads

Assuming a lumped approximation of the matrix M, one can find 
the simplified equivalent quadratic norm of the displacement 
vector 
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DESIGN PROBLEM FORMULATION

The choice of the compliance is generally the main choice by 
designers.

– At equilibrium, the compliance is also the strain energy of 
the structure, so that compliance is the energy norm of the 
displacements giving rise to a smooth displacement field 
over the optimized structure.

– One can interpret the compliance as the displacement under 
the loads. For a single local case, it is the displacement 
under the load.
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DESIGN PROBLEM FORMULATION

The choice of the compliance is generally the main choice of 
designers.

– The sensitivity of compliance is easy to calculate. Being self 
adjoined, compliance is self adjoined, and it does not require 
the solution of any additional load case. 

– Conversely local stress constraints call for an important 
amount of additional CPU to compute the local sensitivities. 

– One can find analytical results providing the optimal bounds 
of composites mixture of materials for a given external strain 
field. The problem is known as the G-closure.
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DESIGN PROBLEM FORMULATION

Finally the statement of the basic topology problem writes:

Alternatively it is equivalent for a given bounds on the volume 
and the compliance to solve the minimum compliance subject to 
volume constraint
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PROBLEM FORMULATION

For several load cases, average compliance

Or better a worst-case approach

– Where k is load case index, K is the stiffness matrix of FE 
approximated problem, gk, and qk are the load case and 
generalized displacement vectors for load case k

– and (x) is the local density and V is the volume 21



DESIGN PROBLEM FORMULATION

Minimize compliance

s.t.

– Given volume

– (bounded perimeter)

– (other constraints)

Maximize eigenfrequencies

s.r.

– Given volume

– (bounded perimeter)

– (other constraints)

Minimize  the maximum of 
the local failure criteria

s.t.

– Given volume

– (bounded perimeter)

– (other constraints)



TOPOLOGY OPTIMIZATION 
USING HOMOGENIZATION

VS
SIMP BASED TOPOLOGY 

OPTIMIZATION
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TOPOLOGY OPTIMIZATION: FORMULATION

Well-posed ness of problem? 
Discretised problem is ill-posed

– Mesh-dependent solutions

– Recreate microstructures

– Nonexistence and uniqueness of 
a solution

Homogenisation Method:

→ Extend the design space to all 

porous composites of variable 
density

Filter method / Perimeter method /

Slope constraints:

→ Restrict the design space by 

eliminating chattering designs from 
the design space

2
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HOMOGENIZATION METHOD

Select one family of microstructures 
whose geometry is fully 
parameterized in terms of a set of 
design variables [Bendsoe and 
Kikuchi, 1988]

– G closure : optimal 
microstructure (full relaxation)

– Suboptimal microstructures 
(partial relaxation)

Use homogenization theory to 
compute effectives properties: in 
terms of microstructural geometrical 
parameters: Eijk = Eh

ijkl(a,b,…)

Difficult to interpret and fabricate the 
optimal material distribution as it is

Revival interest with arrival of 
cellular structures e.g. lattice 
structures made by additive 
manufacturing 

2
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POWER LAW MODEL (SIMP)

Simplified model of a 
microstructured material with a 
penalisation of intermediate 
densities [Bendsoe, 1989]

Stiffness properties:

Strength properties:

Modified SIMP should be 
preferred to avoid singularities

Can be related to actual micro 
geometries [Bendsoe and 
Sigmund, 1999]

90% of current topology 
optimization runs
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ALTERNATIVE PARAMETRIZATION TO SIMP

Alternatively RAMP
parameterization (Stolpe & 
Svanberg, 2001) enables  
controlling the slope at zero 
density 

Halpin Tsai (1969) 

Polynomial penalization (Zhu, 
2009):
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HOMOGENIZATION METHOD

Investigation of the influence of the selected microstructure upon 
the optimal topology :

– 1° orthotropic v.s. isotropy 

– 2° penalization of intermediate properties
28

From anisotropic to isotropic materials

Penalization of intermediate densities



SIMP : PENALIZATION OF INTERMEDIATE DENSITIES
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SIMP with p=2 SIMP with p=3

SIMP with p=4



POWER LAW MODEL (SIMP)

Prescribing immediately a high penalization may introduce some 
numerical difficulties:

– Optimization problem becomes difficult to solve because of 
the sharp variation of material properties close to x=1

– Optimization problem includes a lot of local optima and 
solution procedure may be trapped in one of these.

To mitigate these problems, one resorts to the so-called 
continuation procedure in which p is gradually increased from a 
small initial value till the desired high penalization.

Typically:

– p(0) = 1.6

– p(k+1) := p(k) + Dp after a given number of iterations

or when a convergence criteria is OK
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FILTERING TECHNIQUES
AND

MESH INDEPENDENCY 
STRATEGIES

31



Two numerical difficulties

Checkerboard patterns: numerical instabilities 
related to the inconsistency between the 
displacement and density fields.

– Appearance of alternate black-white 
patterns

– Checkerboard patterns replaces 
intermediate densities

Mesh dependency: the solution depends on 
the computing mesh.

– New members appears when refining the 
mesh

– Number of holes and structural features is 
modified when changing the mesh.

– Stability (and meaning) of solutions? 32



Checkerboard patterns

Babuska Brezzi conditions 
of discretization schemes

Checkerboard free 
numerical schemes

– High order FE elements

– Filtering density field 
solutions ➔ lower order 

density fields

– Perimeter constraint

33



Checkerboard patterns

34

FE u: degree 2 / Density : constant

Solution with checkerboards
SIMP with p=2
FE u: degree 1 / Density : constant

With perimeter constraint



Checkerboard patterns
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FE u: degree 2

SIMP with p=3.  F u: degree 1

Perimeter < 60



Checkerboard patterns
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FE u: degree 2

SIMP with p=3.  FE u: degree 1

Perimeter < 60



Mesh dependency

Mesh independent solution: insure mesh independent filtering of 
lower size details 

– Low pass filter [Sigmund (1998)]

– Perimeter constraint [Ambrosio & Butazzo (1993)]
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Mesh independency

38

Perimeter < 60

FE u: degree 1



PERIMETER METHOD

Continuous version of perimeter measure

– With the gradient of the density field and the 
jump []j of the density across discontinuity 
surfaces j

The continuous approximation of the modulus of 
the gradient

39



PERIMETER METHOD

The structural complexity of the structure is controlled with a 
bound over the perimeter

An efficient numerical strategy has been elaborated to cater 
with the difficult perimeter constraint (Zhang & Duysinx, 1998)
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FILTERING MATERIAL DENSITIES

To avoid mesh dependency and numerical instabilities like 
checkerboards patterns, one approach consists in restricting the 
design space of solutions by forbidding high frequency 
variations of the density field.

Basic filtering by Bruns and Tortorelli (2001), proven by Bourdin 
(2001)

41



FILTERING MATERIAL DENSITIES

Other weighting functions

– Gaussian

– Constant

Density filter is equivalent to solving a Helmotz equation 
Lazarov et al. 

With the following Neuman boundary conditions
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FILTERING MATERIAL DENSITIES

Historically Ole Sigmund (1994, 1997) introduced a filter of the 
sensitivities

with

For non uniform meshes, Sigmund proposed to use

The smoothed sensitivities correspond to the sensitivities of a 
smoothed version of the objective function (as well as the 
constraints) 43



FILTERING MATERIAL DENSITIES
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FILTERING MATERIAL DENSITIES
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FILTERING MATERIAL DENSITIES

46

• Mesh dependent
• Checkerboard
• Non-Discrete 

Solut.



HEAVISIDE FILTER

To obtain 0/1 solutions , Guest et al. (2014) modifies the 
density filter with a Heaviside function such that if xe>0, the 
Heaviside gives a physical value of the density equal to ‘1’ and if 
the xe=0, the Heaviside gives a density ‘0’

47



HEAVISIDE FILTER

To obtain 0/1 solutions , Guest et al. (2014) modifies the 
density filter with a Heaviside function such that if xe>0, the 
Heaviside gives a physical value of the density equal to ‘1’ and if 
the xe=0, the Heaviside gives a density ‘0’

Heaviside smooth approximation

– For b→ 0, the filter gives the original filter

– For b→ infinity, the function reproduces the max operator, 

that is the density becomes 1 if there is any element in the 
neighborhood that is non zero.

48



HEAVISIDE FILTER

Heaviside smooth approximation

– For b→ 0, the filter gives the original filter

– For b→ infinity, the function reproduces the max operator, 

that is the density becomes 1 if there is any element in the 
neighborhood that is non zero. 49



HEAVISIDE FILTER

Heaviside smooth approximation

50

• Mesh dependent
• Checkerboard
• Non-Discrete Solution
• Need of continuation / Large number of iterations (>100)



HEAVISIDE FILTER

Heaviside function can be extended (Wang, Lazarov, Sigmund, 
2011) to control minimum and maximum length scale
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HEAVISIDE FILTER

Heaviside function enables a control of manufacturing tolerant 
designs ➔ robust design

52
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THE THREE FIELD APPROACH

Combining density filtering and Heaviside filter give rise to the 
so called three field topology optimization scheme proposed by 
Wang et al. (2011), one uses a design field, a filtered field and a 
physical field whose relations are defined though the following 
filter and thresholding processes

– Filtering

– Heaviside

53



SENSITIVITY ANALYSIS
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SENSITIVITY ANALYSIS

Study of the derivatives of the structure under linear static 
analysis when discretized by finite elements.

The study is carried out for one load case, but it can be easily 
extended to multiple load cases.

Equilibrium equation of the discretized structure:

– q generalized displacement of the structure 

– K stiffness matrix of the structure discretized into F.E.

– g generalized load vector consistent with the F.E. 
discretization
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SENSITIVITY ANALYSIS

Let x be the vector of design variables in number n.

The differentiation of the equilibrium equation yields the 
sensitivity of the generalized displacements:

The right-hand side term is called pseudo load vector

Physical interpretation of the pseudo load (Irons): load that is 
necessary to re-establish the equilibrium when perturbating the 
design. 56



SENSITIVITY ANALYSIS

A central issue is the calculation of the derivatives of the 
stiffness matrix and of the load vector.

In some cases the structure of the stiffness matrix makes it 
easy to have the sensitivity of the matrix with respect to the 
design variable

In topology optimization using SIMP model:

The stiffness matrix

And its derivatives
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SENSITIVITY OF COMPLIANCE

The compliance is defined as the work of the applied load.

It is equal to the twice the deformation energy

The derivative of the compliance constraint gives:

Introducing the value of the derivatives of the generalized 
displacements:
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SENSITIVITY OF COMPLIANCE

The expression of the sensitivity of the compliance writes

Generally the load vector derivative is zero (case of no body 
load), it comes:

59



NUMERICAL SOLUTION OF 
TOPOLOGY PROBLEMS

USING GRADIENT BASED 
MATH PROGRAMMING
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NUMERICAL SOLUTION OF 
TOPOLOGY OPTIMIZATION PROBLEMS

Optimal material distribution = very large scale problem

– Large number of design variables: 1 000 → 100 000 

– Number of restrictions: 

1 → 10 (for stiffness problems)

1 000 → 10 000 (for strength problem with local constraints)

Solution approach based on the sequential programming approach and 
mathematical programming

– Sequence of convex separable problems based on structural 
approximations

– Efficient solution of sub problems based on dual maximization

Major reduction of solution time of optimization problem

Generalization of problems that can be solved
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SEQUENTIAL CONVEX 
PROGRAMMING APPROACH

Direct solution of the original 

optimisation  problem which is 

generally non-linear, implicit

in the design variables

is replaced by a sequence of  optimisation  sub-problems

by using approximations of the responses and using powerful

mathematical programming algorithms
62



SEQUENTIAL CONVEX PROGRAMMING APPROACH

Two basic concepts:

– Structural approximations replace the implicit problem by an 

explicit optimisation sub-problem using convex, separable, 

conservative approximations; e.g. CONLIN, MMA

– Solution of the convex sub-problems: efficient solution using dual 

methods algorithms or SQP method.

Advantages of SCP:

– Optimised design reached in a reduced number of iterations: 

typically 100 F.E. analyses in topology optimization

– Efficiency, robustness, generality, and flexibility, small computation 

time

– Large scale problems in terms of number of design constraints and 

variables 63



Linear approximation and 
Sequential Linear Programming

Linear approximation = first order Taylor expansion around x0:

When linear approximation is applied to each function of the 
problem, one transforms the problem into a sequence of linear 
programming problems (SLP):
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SEQUENTIAL LINEAR PROGRAMMING METHOD

The current design point is x(k).  Using the first order Taylor 
expansion of f(x), hj(x), we can get a linear approximation of 
the NL problem in x(k):

Solving this LP problem, we get a new point in x(k+1) and start 
again. 

65

DOESN’T WORK!



SEQUENTIAL LINEAR PROGRAMMING METHOD

MOVE LIMIT STRATEGY

Introduce a box constraint 
around the current design point 
to limit the variation domain of 
the design variables

Of course take the most 
restrictive constraints with the 
side constraints
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STRUCTURAL APPROXIMATIONS

Convex Linearisation (CONLIN)

Method of Moving Asymptotes (MMA)
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CONLIN approximation
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Approximation of the strain energy in a two plies symmetric laminate 
subject to shear load and torsion (Bruyneel and Fleury, 2000)
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MMA approximation

Approximation of the strain energy in a two plies symmetric laminate 
subject to shear load and torsion (Bruyneel and Fleury, 2000)
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DUAL METHODS

Primal problem

Lagrange function:

If the problem is convex…
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DUAL METHODS

Dual problem

– with

Solve Lagrangian problem

Lagrangian problem
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NUMERICAL APPLICATIONS
OF COMPLIANCE 

MINIMIZATION BASED 
TOPOLOGY OPTIMIZATION
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x

y
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Optimization of a maximum stiffness bicycle frame

Load cases

Optimum topology

Nonconventional design

Conventional design
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Design of a Crash Barrier Pillar (SOLLAC)
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Design of a Crash Barrier Pillar (SOLLAC)
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Topology Optimization 
of a Parasismic Building (DOMECO)
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3D cantilever beam problem

No perimeter constraint

E=100 N/m², n=0.3

20 x 32 x 4 = 2560 F.E.s
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3D cantilever beam problem

Perimeter = 1000Perimeter = 1400 78



An industrial application: Airbus engine pylon

Application 
– carried out by SAMTECH and 

ordered by AIRBUS

Engine pylon
= structure fixing engines to the 

wing

Initial Model
– CATIA V5 import → Samcef 

Model

– BC’s: through shell and beam FE

– 10 load cases: 
GUSTS

FBO (Fan blade out)

WUL (Without undercarriage 
landing)

79

Over 250.000 tetraedral FE



An industrial application: Airbus engine pylon

Target mass: 10%

Additional constraints:
– Engine CoG position

Optimization parameters

– Sensitivity filtering: 
(Sigmund’s filter)

– Symmetry (left right) 
condition

– Penalty factor

CONLIN optimizer: special 
version for topology 
optimization 80

Sensitivities filtering

Penalty factor from 2 to 4



Airbus engine pylon

81
With courtesy by Samtech and Airbus Industries



Airbus engine pylon
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With courtesy by Samtech and Airbus Industries



Sandwich panel optimization

Geometry of the sandwich panel reinforcement problem

Optimal topology

83



Sandwich panel optimization

Geometry of the sandwich panel reinforcement problem

Optimal topology
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PLATE AND SANDWICH PLATE MODELS

(a) (b)

(c) (d)



USING SIMP MODEL FOR TOPOLOGY 
OPTIMISATION OF PLATES AND SHELLS

0.0 0.25 0.5 0.75 1.0

 

is replaced by:

PHYSICAL MEANING OF DENSITY VARIABLE:



PROTOTYPE CAR BODY OPTIMIZATION

Load case 1: bending

– Self weight

– Components (20 kg)

– Pilot (50 kg)

– Roll over load (70 kg on top 
of roll cage)

Load case 2: torsion + bending 
= curb impact

– Rear axle clamped

– Right front wheel free 
supported

– Left front wheel 
withstanding 3 times the 
weight of the axle

70 kg

weight x 3= 2700 N(Figures from Happian-Smith)
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DESIGN OF A URBAN CONCEPT STRUCTURE

Topology optimization of the 
truss structure

– Target mass of 15 kg

– Minimum compliance

– Mostly determined by 
load case 2 (torsion)

– SIMP material with p=3

– Left / right symmetry of 
material distribution

– Filtering 

8
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DESIGN OF AN URBAN CONCEPT STRUCTURE

Convergence history
89



DESIGN OF AN URBAN CONCEPT STRUCTURE

Volume = 40%

Volume = 20%

Volume = 60%
90



DESIGN OF AN URBAN CONCEPT STRUCTURE

9
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VIBRATION PROBLEMS
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NATURAL VIBRATION PROBLEMS

Finite element discretization of the system

Kinetic energy

Strain energy
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NATURAL VIBRATION PROBLEMS

Hamilton principle

Dynamic equation of the system

Free vibrations : assume periodic solutions

Nontrivial solutions are solutions of the eigenvalue problem
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NATURAL VIBRATION PROBLEMS

Eigenvalue problem

Rayleigh ratio
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DESIGN PROBLEM FORMULATION

Fundamental topology optimization problem of vibrating 
structures

To avoid mode crossing, it is better to select several eigenvalues 
and to maximize the minimum of the first NF frequencies
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DESIGN PROBLEM FORMULATION

However, the fact that both mass and stiffness depends on the 
density design variables, the trivial solution 0=0 is feasible.

Therefore, best eigenfrequency design problem is formulated as 
a reinforcement problem, i.e. there exist some non design mass 
or stiffness 
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REINFORCEMENT DESIGN PROBLEM

Topology optimization of sheet of steel:

– Basic sheet: t=1mm

– Reinforcement sheet t=1mm
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REINFORCEMENT DESIGN PROBLEM

Topology optimization of sheet of steel:

– Basic sheet: t=1mm

– Reinforcement sheet t=1mm
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SENSITIVITY OF EIGENVALUE PROBLEMS

Eigenvalue problem

– K stiffness matrix, M mass matrix

– q the eigenmode vector

– And w the eigenfrequency

The magnitude of the modes is arbitrary, so they are normalized 
according to a given matrix W (generally the mass matrix M)

At first let’s consider the simplified approach: we assume that all 
eigenvalues are distinct and ordered from the smallest to the largest:
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SENSITIVITY OF EIGENVALUE PROBLEMS

Let’s differentiate the eigenvalue equation

Differentiating the normalization equation gives

To obtain the derivatives of the eigenvalue l(k), one has to 
premultiply the first equation by the eigenmode q(k)
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SENSITIVITY OF EIGENVALUE PROBLEMS

Since q(k) is an eigenmode

And one gets

With the scaling factor

We finally obtain the final expression of the sensitivity of the 
eigen values:
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DIFFICULTIES IN VIBRATION PROBLEMS

Topology optimization of vibrating structures presents a major 
difficulty:

– Appearance of dummy eigenmodes, i.e. local modes with 
zero frequency 

Require special strategy

– Modification of material interpolation ➔ modified SIMP or 

RAMP

– Filtering the dummy modes
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DIFFICULTIES IN VIBRATION PROBLEMS

Illustration using a numerical example

Material : Steel E=210 Gpa, n=0.3, =7800 kg/m³

T=1e-3 m

Interpolation law: SIMP p=3

Max volume= 80%

Design domain = Support only

104



DIFFICULTIES IN VIBRATION PROBLEMS

Illustration using a numerical example

Material : Steel E=210 Gpa, n=0.3, =7800 kg/m³

T=1e-3 m

Interpolation law: SIMP p=3

Max volume= 80%

Design domain = Support only 105



DIFFICULTIES IN VIBRATION PROBLEMS

Convergence curve after 10 iterations
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DIFFICULTIES IN VIBRATION PROBLEMS

Convergence broken after 4 iterations when SIMP p=4
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DIFFICULTIES IN VIBRATION PROBLEMS

Low frequency modes are present in low density regions

Modify SIMP to give a lower bound in low density to the ratio E/

– Modified SIMP
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DIFFICULTIES IN VIBRATION PROBLEMS

Ignore / filter eigenmodes which are not significant 

– Selection criteria: generalized mass ➔ local character of the 

mode
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