DESIGNING WITH TOPOLOGY OPTIMIZATION

Pierre DUYSINX LTAS – Automotive Engineering Academic year 2021-2022

LAY-OUT

- $\ \ \, \square \quad Introduction$
- Design process loop
- Design methodology using topology optimization
- Numerical applications
- Conclusion

MOTIVATION

MOTIVATION

- Morphology of component has a great influence on the final performance
- Unappropriated choice of topology can limit the final satisfaction of the specifications
- Engineers used to trust in their intuition or former knowledge of the topic and empirical choices
- □ Need for new methods to replace empirical choice or trial-anderror process → topology optimization
- Topology optimized components can reach gains of 50 to 100% in terms of overall performance

MOTIVATION

CAD approach does not allow topology modifications

PLACE OF TOPOLOGY OPTIMIZATION IN THE DIGITAL DESIGN CHAIN

A PRELIMINARY DESIGN TOOL

- Topology optimization is a **preliminary design tool** that must be followed by additional steps of design and verifications.
- Topology optimized results must be post treated:
 - Optimized results are not black-and-white pictures. They include intermediate density regions or microstructures.
 Microstructures can not be manufactured using classic manufacturing processes.
 - Topology optimization consider only a subset of design specifications. → Additional simulations.
 - Simulation and fabrication often require smooth boundary contours → interpretation and reconstruction of a parametric CAD model

A PRELIMINARY DESIGN TOOL

- Continuous design chain
 - Topology optimization has to determine a good morphology
 - Global criteria
 - Boundary conditions
 - Linear analysis?
 - Shape and sizing optimizations has to refine the design to cope with the full specification booklet
 - Local constraints
 - Non linear simulation
 - Manufacturing...

INTEGRATION OF SHAPE AND TOPOLOGY

- Shape of design domain can change topology and vice-versa
- Non continuous mapping between optimized topology and design domain shape (Bruyneel)
- Interlaced shape and topology optimization processes (Maute & Ramm, 1994)
- Simultaneous shape and topology optimization (Kuci, 2018)

METHODOLOGY FOR TOPOLOGY OPTIMIZATION PROJECT

- Carrying out successfully a topology optimization process requires a structured methodology
- Accounting correctly for the problems specifications:
 - Boundary conditions
 - Load cases
 - Symmetry conditions
 - Problem formulation
- Selecting appropriated TO process parameters:
 - Power penalization,
 - Volume constraints,
 - Filter parameters: density and thresholding functions
 - Material interpolation laws
 - Finite element discretization
- Optimization algorithms

□ 1/ Choice of the design domain

- Can be used to prescribe overall design constraints (packaging, system integration)
- Be careful with infinite boundary conditions: avoid interaction of the optimized material distribution with the design domain boundaries
- Be able to account for the fixations, loads, etc.
- Take benefit of symmetry conditions, repeated patterns, etc.

Choice of the design domain

Choosing the appropriated loads and boundary condition is essential!

□ Large design domain gives full freedom to the designer

Design domain can restrain the optimized distribution

- No symmetry
 - No geometrical symmetry
 - No loading symmetry

- Symmetry	
C None	Frame # 0
CX⊙MCZ	
O Axi 90 Deg. 🗆	Mirror

- Symmetry about y-axis
 - Use structural frame (.FRAME)
 - Applicable on non symmetric meshes
 - Applied only on optimizable design elements
- Symmetry about x-axis

Symmetry

📀 Axi 🔂 Deg. 🗌 Mirror

C None C X C Y C Z Frame # 0

- No symmetry
 - No geometrical symmetry
 - No loading symmetry

With mirror symmetry inside sector

- Identification of design variables
 - Non design parts
 - Part with full density material (mandatory presence of material)
 - Loads application points
 - Supports
 - Functional surfaces for connections
 - Parts with zero density \rightarrow holes or other components

- $\ \ \, \square \quad Select \ groups \ of \ elements$
- □ TOPOLVAR → optimizable elements
- □ TOPOLFIX → fixed density element = removed from optimization
- But default: all elements are optimized

Define the cylinders holes as non design

Non design regions

20

- 3/ Choice of a material interpolation law
 / composite microstructure
- □ Interpolation is necessary to relax the 0/1 optimization problem \rightarrow continuous variable optimization
- Penalization: reduce intermediate density regions
- Optimal microstructures like rank-N materials \rightarrow full mathematical relaxation
- Other microstructures or mathematical interpolation laws: Uncomplete relaxation

- 3/ Choice of a material interpolation law
 / composite microstructure
- SIMP (Simply Isotropic Material with Penalization) :

 $E(x) = x^p E^0 \quad p > 1$

 Modified SIMP should be preferred to avoid singularities

$$E(x) = E_{min} + x^p (E^0 - E_{min})$$

- Choice of parameter p
 - Classic choice p= 3!
 - Low penalization (very stable convergence) p=1.6
 - High penalization (but many local optima!) p=
 4 or more...

SIMP with p=2

SIMP with p=3

- 3/ Choice of a material interpolation law / composite microstructure
- Alternatively RAMP parameterization (Stolpe & Svanberg, 2001) enables controlling the slope at zero density

$$E(x) = \frac{x}{1 + p(1 - x)} E^0$$

Halpin Tsai (1969)

$$E(x) = \frac{r x}{(1+r) - x} E^0$$

Polynomial penalization (Zhu, 2009):

$$E(x) = \left(\frac{\alpha - 1}{\alpha}x^p + \frac{1}{\alpha}x\right) E^0$$

 Necessary for problems like selfweight, eigenvalue problems (vibration, stability)!

- □ 4/ Finite element model
 - Mesh with appropriate density
 - Free mesh is possible
 - Mesh regularity: quadrangular finite element should be preferred

□ 4/ Finite element model

Finite element type and approximation

- Assumption : plate elements, volume elements, bending elements
- Approximation degree: degree 2 is better for checkerboard alleviation and stress estimation but the CPU cost is very expensive
- Degree 1 is possible but should completed by density filter or perimeter constraint
- Discretization of the density field
 - Most usual discretization: constant density per finite element (centroid density)
 - Node discretization and linear interpolation function is possible
 - Level set discretization or phase field are alternative options

- □ 4/ Finite element model
 - Initial density distribution
 - Uniform average density
 - Random density distribution with average satisfying volume constraint
 - Full material density

Meshing the design domain

□ Irregular meshes give poor results

□ Irregular meshes give poor results

FE Degree 2

- D 5/ Regularization strategy
 - Mesh independency
 - Checkerboard alleviation
 - Minimum size
 - Perimeter method: not popular anymore
 - Three field method
 - Density filtering
 - Heaviside filtering

Two numerical difficulties

- Checkerboard patterns: numerical instabilities related to the inconsistency between the displacement and density fields.
 - Appearance of alternate black-white patterns
 - Checkerboard patterns replaces intermediate densities
- Mesh dependency: the solution depends on the computing mesh.
 - New members appears when refining the mesh
 - Number of holes and structural features is modified when changing the mesh.
 - Stability (and meaning) of solutions?

THE THREE FIELD APPROACH

- Three field topology optimization scheme proposed by Wang et al. (2011),
 - Density filtering

$$\tilde{x}_e = \frac{\sum_{i \in N_e} w_i(X) v_i x_i}{\sum_i w_i(X_i) v_i}$$

- Heaviside filter
 - □ Thresholding
 - Erode / delate geometry

$$\hat{x}_e = \frac{\tanh(\beta \,\mu) \,+\, \tanh(\beta \,(\tilde{x}_e - \mu))}{\tanh(\beta \,\mu) + \tanh(\beta \,(1.0 - \mu))}$$

- □ Filter size must be:
 - Sufficiently large
 - Independent of the mesh size (absolute dimension)
- □ In NX, standard size of the filter
 - 2D \rightarrow 8 elements
 - 3D → 16 elements

Optimization of the density distribution

- One iteration includes:
 - One FE analysis
 - Sensitivity analysis
 - Optimization using CONLIN or MMA
 - Update the density field

Define the problem characteristics

- Add/edit specific data
 - Formulation:
 - Optimization control
 - Topology optimization control:
- Manage execution
- Drive post-processing action

- Define the problem characteristics
 - Add/edit specific data
 - Manage execution
 - Drive postprocessing action

			🔦 торс
olver Options Analysis Static Static Static Static O Vitual LoadCases Adapt Implicit Loads Adapt Implicit Loads Adapt Implicit Loads Number of Modes Penalty Vinital Run 20 Max: Number of Iteration Penalty Vinital Run 20 Max: Number of Iteration Restart effer Iteration Full Analysis at End C on Purged Model "TOPOLUser" script at End Show YRML result at End	Symmetry None X G Y C Z Axi 30 Deg. Optimisation 02 Target Volume 0n Design Space Only .01 Density Min. 2 Frequency Min. 8 # Elis Fiter .01 Convergence Threshold % Slatting at Iltration 1	Algorithm SP01 I.e-0 1.e-4 TOL 1.e-0 0.0 PREC 0.0 PBC 0.0 PDS 1 CHECK 0.05 SWITCH 0 PenObj 2 CUT Ø Best Iteration Scaing 100 % Freedom 100 % Freedom (Iter 1) Print Level	Post-Processing Structure Plot Options Density Purge:
EditModel StatTDPOL Vew Results p: /scratch/aremouc/bisym/cantilever_top.an .RETRY SCP 1/1 Copy aremouc%lx61:/scratch/a p: /scratch/aremouc/bisym/cantilever_top.an .FAILED Copy aremouc%lx61:/scratch/aremouc/ SAI_RCPCMD was Y:\USers\aremouc\Destcop\ar .cantilever_top Remote (sah) run lx64 arem .Copy SCP aremouc%lx64:/scratch/aremouc/bis .cantilever_top Remote (sah) run lx64 aremouc/ .cantilever_top Remote (sah) run lx64 aremouc/ .cantilever Job Dosyob win Remote (sah) run lx64 aremouc/ .cantilever [cop Dosyob win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx64 aremouc/ .cantilever [cop Cop S00 win Remote (sah) run lx6	<pre>if: No such file ^ if: No such file ^ if: No such file ^ bisym/cantilever 66.6</pre>	Densty Min% Densty Low% Densty Ma2%	Quit

- Minimize compliances.t.
 - Given volume
 - (bounded perimeter)
 - (other constraints)
- Maximize eigenfrequencliess.r.
 - Given volume
 - (bounded perimeter)
 - (other constraints)

- Minimize the maximum of the local failure criteria
- s.t.
- Given volume
- (bounded perimeter)
- (other constraints)

- Volume constraint:
 - Typically between 20 to 80 \rightarrow average value: 50%
 - If mass constraint is given: naturally prescribed!
 - If no mass constraint: volume is a design parameter
 - In the mean range [30%; 70%], it has not generally a major influence on final topology but more a sizing influence.
 - Convergence becomes very delicate for very low density constraint i.e. Vmax < 15% design domain volume

- Optimization algorithm
 - Best algorithms used dual maximization and convex approximations
 - $\Box \text{ CONLIN} \rightarrow \text{SPOT}$
 - \square MMA
 - GCMMA in case of non monotonic responses (e.g. self weight)
 - Convergence must be understood in terms of design variable stationarity NOT in terms of objective function!
 - Stopping criteria is the modification of the design variables
 - Not picture nice looking stopping criteria
 - Topology optimization convergence requires at least 100 iterations but more generally 250 iterations

Optimization algorithm

- If starting from infeasible design, the first iterations are devoted to find a first feasible design point (generally satisfying the volume constraint)
- When convergence is unstable, resort to tight move-limits

$$\hat{x}_{i} - \alpha_{i} \leq x_{i} \leq \hat{x}_{i} + \beta_{i}$$
Typically
$$\alpha_{i} = \beta_{i} = \Delta x_{i} = 0, 3$$

$$\overset{\mathsf{x}_{i}}{=} 0, 3$$

$$\overset{\mathsf{x}_{i}}{=} \alpha_{i} = \alpha_{i} = 0, 3$$

- B/ Visualization and interpretation of optimized density map
 - Visualization of density maps
 - Interpret optimized density
 - Construct a smooth Computer Aided Design (CAD) model
 Introduce aesthetic or manufacturing constraints if necessary

□ Interpret the optimized topology

- Define the nature of structural members:
 - Beams
 - Plates
 - Volume

Interpret the optimized topology

- Define the nature of structural members:
 - Beams
 - Plates
 - Volume

□ Interpret the optimized topology

- Define the nature of structural members:
 - Beams
 - Plates
 - Volume

- Two zones:
 - Frame structure
 - Shear panel

Interpreting the optimized density distribution

Interpreting the optimized density distribution

Smoothing density distribution with NX10

NUMERICAL APPLICATIONS

SHAPE & TOPOLOGY OPTIMIZATION OF MAG'IMPACT EJECTOR

- Topology optimization with optimized bolt positions
 - Mesh and design domain

5627 FE 3524 density var.

- Material distribution field

Mass=49,7 kg (-27%) Compliance: 0,35J (-50%)

- Topology optimization of reference configuration
 - Mesh and design domain

3655 FE 2578 density var.

- Material distribution field

Mass=59,3 kg

Compliance: -9%

- Topology optimization of reference configuration
 - Material distribution field

Mass=59,3 kg

Stress field

 σ_{max} =21.6 MPa

- Topology optimization with optimized bolt positions
 - Mesh and design domain

5627 FE 3524 density var.

- Material distribution field

Mass=49,7 kg (-27%) Compliance: 0,35J (-50%)

- Topology optimization of reference configuration
 - Material distribution field

Mass=49,7 kg

- Stress field

σ_{max}=17,8 MPa

Effect of counter-weight design?

Sensitivity of compliance (finite difference)

Topology optimization with optimized 2 bolt positions

6007 FE - 3886 density var.

Material distribution field (it=200)

Compliance= 0,47J - Mass= 51,5 kg σ_{max} =25,5 MPa

- Boundary conditions:
 - 1/ bolt holes clamped
 - 2/ bold hole 1 clamped and wall boxes of holes 2 and 3 clamped

□ Topology optimization using BC1

Wall box have disappeared

- Mostly 2D problem here: geometry remains nearly extruded from 2D
- Other boundary conditions can modify the geometry
- Worn geometry is not a critical load case

□ Topology optimization using set of BC 2

Topologies of wall box and bolt bores are different

Mass=43kg Compliance = 0,62J (-55%)

Topology optimization based on used geometry

□ Set of BC 2 only

Mass: 49 kg Compliance: 0,85J

Topology optimization using used geometry

INTERPRETATION OF OPTIMIZED EJECTOR

□ Shape description using Level Sets

