PERFORMANCE OF ELECTRIC VEHICLES

Pierre Duysinx
University of Liège
Academic year 2015-2016
References

- Le véhicule électrique. Educauto. www.educauto.org
Performances of Electric Vehicles

- Vehicle driving performances are assessed by
 - Acceleration time
 - Maximum speed
 - Gradeability

- In EV drive train design: motor power rating and transmission parameters are selected to meet the performance specifications

- They depend mostly on speed-torque characteristics of the traction motor
Traction motor characteristics

- At low speed: constant torque
 - Voltage supply increases with rotation speed through electronic converter while flux is kept constant

- At high speed: constant power
 - Motor voltage is kept constant while flux is weakened, reduced hyperbolically with the rotation speed

- **Base speed**: transition speed from constant torque to constant power regime
Traction motor characteristics

- Speed ratio $x = \text{ratio between maximum rotation speed to base speed}$
 - $X \sim 2$ Permanent Magnet motors
 - $X \sim 4$ Induction motors
 - $X \sim 6$ Switched Reluctance motors

- For a given power, a long constant power region (large x) gives rise to an important constant torque, and so high vehicle acceleration and gradeability. Thus the transmission can be simplified.
Tractive efforts and transmission requirement

- Remind traction effort and vehicle speed

 $$ F_t = \frac{C_m i \eta_t}{R_e} $$

 $$ v = \frac{\omega_m R}{i} $$

- The use of multi-gear or single gear transmission depends on the motor speed-torque characteristics.
 - For a given rated power, a long constant power region makes possible to use a single gear transmission, because of high tractive efforts at low speeds.
 - For long constant torque and a given rated power, the available maximum torque is not sufficient so that a multi gear is generally preferred.
Tractive efforts and transmission requirement

- For a low \(x (x=2) \) motor, tractive effort is not large enough and 3-gear transmission is chosen.
- For intermediate \(x=4 \), a two gear transmission is preferred.
- For a large \(x=6 \), a single gear transmission is chosen.
- The 3 designs have the same Tractive Force / speed profiles, and so the same acceleration and gradeability performances.
Tractive efforts and transmission requirement

Motor speed ratio: $x = 4$

Single-gear transmission
Motor speed ratio: $x = 6$
Max speed can be evaluated by calculating the intersection between the tractive force curve and the resistance curve or alternatively the tractive power (constant) and the resistance forces power.

\[\eta P_{m}^{\text{max}} = AV_{\text{max}} + BV_{\text{max}}^3 \]

Sometimes the intersection does not exist because it is over the maximum rotation speed of the motor

\[V_{\text{max}} = \frac{\pi N_{m}^{\text{max}} R_e}{30i} \]
Gradeability of EV

- Gradeability is ruled by the net tractive force available

\[F_{t}^{\text{net}} = F_t - F_{rlt} - F_{aero} = F_t - mgf \cos \vartheta - 0.5 \rho SC_x V^2 \]

- The maximum grade that can be overcome at a given speed is:

\[\sin \vartheta = \frac{F_t - F_{rlt} - F_{aero}}{mg} = \frac{F_{t}^{\text{net}}}{mg} \]

- One gets:

\[\sin \vartheta = \frac{d - f \sqrt{1 - d^2 + f^2}}{1 + f^2} \]

\[d = \frac{(F_t - F_{aero})}{mg} \]
EV acceleration

- Acceleration can be evaluated by the time to accelerate from a given low speed (often zero) to a given high speed (e.g. 100 km/h).
- Acceleration performance is often more important for drivers than max speed and gradeability.
- Acceleration performance dictates the power rating of the motor.
EV acceleration

- Acceleration time can be calculated by the integral

\[
t_a = \int_0^{V_b} \frac{\gamma m}{P_t/V - mgf - 0.5 \rho C_x SV^2} \, dV + \int_{V_b}^{V_f} \frac{\gamma m}{P_t/V - mgf - 0.5 \rho C_x SV^2} \, dV
\]

- Approximation solution: neglect the rolling and the drag resistances

\[
t_a = \frac{\gamma m}{2P_t} (V_f^2 + V_b^2)
\]
EV acceleration

- Sizing of rated power of electric motor

\[
P_t = \frac{\gamma m}{2t_a} (V_f^2 + V_b^2)
\]

- However to determine more accurately the rated power, one needs to determine the power consumption of the resistance forces

\[
\bar{P}_{aver} = \frac{1}{t_a} \int_0^{t_a} mgfV + 0,5 \rho SC_x V^3 dt
\]
EV acceleration

- As the power is supposed to be constant in some part of the acceleration, one gets the cinematic relation

\[V = V_f \sqrt{\frac{t}{t_a}} \]

- Inserting into the integral, it yields

\[\bar{P}_{\text{aver}} = \frac{2}{3} mgf V_f + \frac{1}{5} \rho SC_x V_f^3 \]

- It comes the estimated power of the motor

\[P_t = \frac{\gamma m}{2t_a} (V_f^2 + V_b^2) + \frac{2}{3} mgf V_f + \frac{1}{5} \rho SC_x V_f^3 \]
The result shows that for a given acceleration performance, low vehicle base speeds will result in small motor power rating.

However the power rating decline rate to the vehicle base speed reduction is not identical:

\[
\frac{dP_t}{dV_b} = \frac{\gamma m}{t_a} V_b
\]
EV acceleration

$P_t = 63 \text{ kW}, x = 4$
$M_v = 1200 \text{ kg}, f_r = 0.01$
$C_D = 0.3, A_f = 2.0 \text{ m}^2$
Acceleration capacity and impedance adaptation

- 1D system with one electric motor connected to the mechanical load via a gear box or reduction ration r
 - M mass of load
 - J inertia of electric motor
 - $r = \frac{Re}{i}$
 - a acceleration of load

- Dynamic equilibrium
 \[T = \left(\frac{J}{r} + m r \right) a \]

- Acceleration
 \[a = \frac{T r}{J + m r^2} \]
Acceleration capacity and impedance adaptation

- Derivative of acceleration with respect to gear ratio

\[\frac{da}{dr} = \frac{T}{J + Mr^2} - \frac{2r^2 TM}{(J + Mr^2)^2} = 0 \]

- Optimal gear ratio

\[r_{opt} = \sqrt{\frac{J}{m}} \]

- Optimal acceleration power

\[a_{max} = \frac{1}{2} \frac{T}{\sqrt{mJ}} = \frac{1}{2} \frac{T}{r_{opt} m} \]

- Conclusion: this is the maximum acceleration that can be given to the load by a motor with maximum torque T
EV accelerations in normal operation

- Driving cycle $V(t)$ is given
- Evaluate the acceleration required: differencing the velocity profile in function of the time,
 \[
 \frac{dV}{dt} \approx \frac{V(t_{k+1}) - V(t_k)}{t_{k+1} - t_k}
 \]
- Tractive force is given by the net force necessary to follow the driving cycle
 \[
 F_t = mgf \cos \vartheta + \frac{1}{2} \rho C_D SV^2 + m\gamma \frac{dV}{dt}
 \]
EV accelerations in normal operation

(a) FTP 75 urban

(b) US 06
EV accelerations in normal operation
EV accelerations in normal operation
EV accelerations in normal operation
EV energy consumption

- In transportation the unit of energy is usually the kWh (kiloWatt hour) (preferred to Joules Joule kJ)
 - ICE with liquid fuels: L/100 km or mpg
 - Gaseous fuel (CH4, H2): kg/100 km

- Advantage: size of batteries given in kWh at battery ports so that the driving range can be calculated immediately

- Energy consumption is the time integration of the power output and input at the battery terminal.
Energy power output
- Equal to the resistance power and the power losses in the transmission and motor drive including the power electronic loses

\[P_{bat}^{in} = \frac{V}{\eta_t \eta_m} (mgf + mg \sin \vartheta + \frac{1}{2} \rho S C_D V^2 + m \gamma \frac{dV}{dt}) \]
- The non traction loads are not included (auxiliary loads) while they can be significantly important and they should be added to the traction load.
EV energy consumption

- The efficiency of the traction motor varies with the operating points on the speed-torque (speed-power) plane.

- Good design: large overlap between maximum efficiency region and the region of visited by the greatest operation points.
EV energy consumption

- The regenerative braking power at battery can be evaluated as

\[
P_{bat}^{out} = \alpha \frac{V}{\eta_t \eta_m} (mgf + mg \sin \theta + \frac{1}{2} \rho S C_D V^2 + m \gamma \frac{dV}{dt})
\]

- In which
 - Road slope sin \(\theta < 0 \) and/or \(\frac{dV}{dt} < 0 \)
 - \(0 < \alpha < 1 \) is the fraction of energy recovered during braking
 - The braking factor \(\alpha \) is a function of the applied braking strength and the design and control of braking system
 - Typical value of energy recovery fraction \(\alpha = 0.3 \)
EV energy consumption

- The **net energy consumption** from batteries is:

\[\hat{E}_{n_{out}} = \int_{\text{traction}} P_{bat}^{out} dt - \int_{\text{braking}} P_{bat}^{in} dt \]

- When the net battery energy consumption reaches the total energy in the batteries, measured at terminal, the batteries are empty and need to be charged.
- The traveling distance between two charges is called the **effective travel range**.
- It is dependent on the battery capacity, the road resistance power, the driving cycle, the effectiveness of regenerative braking, the efficiency of the car and its powertrain.