

Pierre DUYSINX
University of Liege
Academic year 2021-2022

- Understanding, analyzing, and designing clean propulsion systems for vehicles
 - understanding the environment and energy challenges of transport systems
 - = understanding the problems and constraints of energy conversion systems in vehicle applications (impact upon vehicle architecture and performances)
 - = understanding the different kinds of propulsion systems (thermal engines, electric motors, electrochemical converters, etc.)
 - understanding the different energy storage systems (fuels, batteries, supercaps, fly wheels, etc.)
 - = understanding how to combine them to take the best of each of them in an integrated system

Course target

- Assess the performance of the propulsion system and of the vehicle
- Choose a motor with its fuel / energy
- Combine several solutions (hybrid propulsion systems)
- Optimal energy / power management
- Case studies

Agenda

	Date	Cours	Lieu
01	21/09	Introduction et Organisation	TEAMS
		Défis pour l'automobile	
		Sélection d'une motorisation (partie 1)	
02	28/09	Sélection d'une motorisation (partie 2)	TEAMS
03	05/10	Architecture des Systèmes de Propulsion	TBC
		ICE + embrayage + boite de vitesses	
		EV & HEV	
04	12/10	Caractéristiques et performances des moteurs à Combustion Internes	TBC
		Caractéristiques et performances des machines Electriques	

Agenda

TBC	Date	Cours	Lieu
05	19/10	Introduction au calcul des performances des véhicules (partie 1)	TBC
		Forces aux roues/ Résistance à l'avancement	
06	26/10	Introduction au calcul des performances des véhicules (partie 2)	TBC
		Vitesse max, pente max, accélération, consommation	
		Projet partie 1: Performance of véhicule à moteur à combustion interne	
XX	02/11	CONGE D'AUTOMNE	

Agenda

	Date	Cours	Lieu
07	09/11	Performance des véhicules électriques	TBC
08	16/11	Batteries et systèmes de stockage de l'énergie et de la puissance	TBC
09	23/11	Véhicules Hybrides. Principes de fonctionnement Architecture et Composants	TBC
		Projet partie 2: Performance of VE	
10	30/11	Piles à combustible - Véhicules à Pile à Combustible	TBC
	07/12	Laboratoire: Banc à rouleaux	
XX	18/12	Projet: Remise des projets	
**	**/01	Examen en janvier	

- Introduction: context and challenge of clean propulsion
- Selection of a propulsion system
 - Selection and comparison
 - Internal combustion engines
 - Electric vehicles
 - Hybrid powertrains
 - Fuel cell vehicles
- Internal Combustion Engines
 - Engine principles and architecture
 - Engine performances and characteristic curves
 - State-of-the-art and Future trends

- Electric motors
 - Electric motor type
 - DC / AC /SRM
 - Power electronics
 - Modelling
- Fundamental of vehicle propulsion and braking
 - Powertrain technologies
 - Propulsion forces and road resistances
 - Performance evaluation
 - Max speed, gradeability
 - Acceleration
 - Energy consumption and emissions
 - Driving cycles, estimation procedures, chassis dynamometer

- Electric vehicles:
 - Electric powertrain & Architecture
 - Performances
 - Design principles
 - Selection battery, electric motor, dear box
- Energy and power storage systems
 - Batteries
 - Characteristics
 - Technologies

- Hybrid vehicles architecture
 - Concept of hybrid powertrain
 - Key Components
 - Energy Management Strategies
 - Case studies
 - Passenger cars: Prius, Insight
 - Hybrid buses: electric vs hydraulic
- Fuel Cell and Fuel Powered Vehicles
 - Principles
 - Modeling
 - Sizing

- Lectures & Exercises
 - Mardi: 08:30-11:30
 - TEAMS

- Labs
 - Thermodynamic Labs (B49)

- Part 1: Performance assessment of ICE and EV vehicles:
 - Max speed, Max slope,
 - Acceleration, Elasticity
- Part 2: Modeling of consumption of ICE and EV against NEDC driving cycles
 - Simulation of energy consumption
 - City driving speed limits 30 km/h vs 50 km/h
 - Comparison and discussion
- Assessment:
 - Evaluation of the reports
 - Defense = second part of the exam.

- Lab:
 - Chassis dynamometer
 - Group of 4 students
- When:
 - December
- Assessment:
 - Report for the group
- Where:
 - Laboratory of Thermodynamics 49, Sart Tilman.

Exam and evaluation

- Projects → continuous evaluation
 - Evaluation: Reports
 - Oral presentation: final discussion and feedback.
- Oral exam
 - Theory (Summary of 4 pages available)
- Period → January

Lecture notes & Contact

- Copies of slides are available on web site:
 - http://www.ingveh.ulg.ac.be/index.php?page=GED-Gramme
 - Cours >> 1MG11
- Prof. Pierre DUYSINX
 - Email <u>p.duysinx@uliege.be</u> / <u>p.duysinx@helmo.be</u>
 - Tel: 04 366.9194
 - Room: 0/514 Institute of Mechanics (B52)

References

- M. Ehsani, Y. Gao, S. Gay, and A. Amadi. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles. Fundamentals, Theory, and Design. CRC Press. 2005.
 - Available on academia.edu
- Les véhicules hybrides. Des composants au système. Sou la direction d François Badin. Editions Technip, Paris, 2013
- C.C. Chan and K.T. Chau. « Modern Electric Vehicle Technology » Oxford Science Technology. 2001.
- Advanced Electric Drive Vehicles. Ali Emadi. CRC Press, 2015.
- R. Kaller & J.-M. Allenbach. Traction électrique. Presses
 Polytechniques et Universitaires Romandes. Vol 1 et 2. 1995.