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Lesson 2
Performance criteria
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Outline

◼ STEADY STATE PERFORMANCES

◼ Maximum speed

◼ Gradeability and maximum slope

◼ ACCELARATION AND ELASTICITY

◼ Effective mass

◼ Acceleration time and distance

3



References

◼ T. Gillespie. « Fundamentals of vehicle Dynamics », 1992, 
Society of Automotive Engineers (SAE)

◼ R. Bosch. « Automotive Handbook ». 5th edition. 2002. Society 
of Automotive Engineers (SAE)

◼ J.Y. Wong. « Theory of Ground Vehicles ». John Wiley & sons. 
1993 (2nd edition) 2001 (3rd edition).

◼ W.H. Hucho. « Aerodynamics of Road Vehicles ». 4th edition. 
SAE International. 1998.

◼ M. Eshani, Y. Gao & A. Emadi. Modern Electric, Hybrid Electric 
and Fuel Cell Vehicles. Fundamentals, Theory and Design. 2nd

Edition. CRC Press.

4



Max speed and gradeability
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Vehicle performances

◼ Vehicle performance are dominated by two major 
factors:

◼ The maximum power available to overcome the power 
dissipated by the road resistance forces

◼ The capability to transmit the tractive force to the ground 
(limitation of tire-road friction)

◼ Performance indices are generally sorted into three 
categories:

◼ Steady state criteria: max speed, gradebility

◼ Acceleration and braking

◼ Fuel consumption and emissions
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Study of performances with tractive force 
diagrams

◼ The steady state performances can be studied using the tractive 
forces / road resistance forces diagrams with respect to the 
vehicle speed

◼ Newton equation

◼ Stationary condition

◼ Then equilibrium writes
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Study of performances with tractive force 
diagrams

◼ One generally defines the net force

◼ One also can use the net force diagram to calculate 

◼ The maximum speed 

◼ The maximum slope

◼ The reserve acceleration available 

8



Study of performances with tractive force 
diagrams
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Study of performances with tractive force 
diagrams
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Study of performances with tractive force 
diagrams
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Maximum speed

◼ For a given vehicle, tires, and engine, calculate the transmission 
ratio that gives rise to the greatest maximum speed

◼ Solve equality of tractive power and dissipative power of road 
resistance

◼ with

◼ As the power of resistance forces is steadily increasing, the 
maximum speed is obtained when using the maximum power of 
the power plant
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Maximum speed

◼ Iterative scheme to solve the third order equation (fixed 
point algorithm of Picard)

◼ Once the maximum speed is determined the optimal 
transmission ratio can be easily calculated by since it occurs 
for the nom rotation speed:
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Maximum speed
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Max speed for given reduction ratio
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Max speed for given reduction ratio

◼ Solve equation of equality of tractive and resistance power, but 
this time, the plant rotation speed is also unknown.

◼ Numerical solution using a fixed-point algorithm (Picard 
iteration scheme)
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Selection of the top gear ratio

◼ Design specifications for the top gear ratio in connection with 
the topo speed criteria (from Wong)
◼ To be able to reach a given top speed with the given engine

◼ To be able to maintain a given constant speed (from 88 to 96 
km/h) while overcoming a slope of at least 3% with the selected 
top gear ratio

◼ These specifications enable to select a proper top gear ratio
◼ The first requirement enables to select a first gear ratio

◼ The second condition enforces to select a gear ratio that gives rise 
to a engine rotation speed that is just above the nominal rotation 
speed (and the max power) in order to save a sufficient power 
reserve to keep a constant speed while climbing a small slope, 
overcoming wind gusts or accounting for loss of engine 
performance with ageing.
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Maximum slope

◼ For the maximum slope the vehicle can climb, two criteria must 
be checked:

◼ The maximum tractive force available at wheel to balance the 
grading force

◼ The maximum force that can be transmitted to the road
because of tire friction and weight transfer
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Maximum slope
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Maximum slope

◼ Vertical equilibrium

◼ Rotational equilibrium about rear wheels contact point

◼ Rotational equilibrium about rear wheels contact point
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Maximum slope

◼ Limitation due to the friction coefficient

◼ Normal forces under the front and rear wheel sets

◼ At low speed and constant speed (ax=0)
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Maximum slope

FOUR-WHEEL DRIVE with electronic power split

Maximum slope
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Maximum slope

FRONT WHEEL DRIVE

Maximum slope
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Maximum slope

REAR WHEEL DRIVE

Maximum slope
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Selection of first gear ration

◼ Maximum slope to be overcome, for instance max = 25%

◼ Tractive force at wheels

◼ Sizing of first gear ration
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Selection of gear ratios

◼ Goal of the selected gear ratio: to adapt the characteristics of 
engine operation (rotation speed, torque) to the vehicle speed. 

◼ The top and lowest gear ratios are selected to

◼ Match a given top speed

◼ To be able to drive over given grading conditions, that is to 
develop sufficiently high tractive forces at wheels

◼ The distribution of intermediate gear ratios in between the top 
and lowest gear ratio is made to span the full range of 
operating speeds more or less smoothl

◼ In principle, the different gear ratios should render as much as 
possible the maximum power curve
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Accelerations and elasticity
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Acceleration performance

◼ Estimation of acceleration and elasticity is based on the second 
Newton law

◼ Warning: when accelerating, the rotation speed of all driveline 
and transmission components is increasing: wheel sets, 
transmission shafts, gear boxes and differential, engine…

➔ Effective mass to account for the kinetic energy of all 

components (translation + rotation)
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Effective mass

◼ Total kinetic energy of the vehicle and its driveline :
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Effective mass

◼ The rotation speed of the driveline components is linked to the 
longitudinal speed of the vehicle

◼ The kinetic energy writes
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Effective mass

◼ One defines an effective mass

◼ The calculation of the effective mass requires the knowledge of 
the geometry of all the driveline components

◼ Empirical formula for preliminary design of cars by Wong
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Effective mass

◼ Empirical correction formula to estimate the effective mass of 
passenger car propelled by piston engines (Wong, 2001)

◼ This estimation formula puts forward the major factors of the 
corrections :

◼ Nearly negligible for low reduction ratios (4th and 5th gear 
ratios)

◼ Rather important for high gear ratios : 1st and 2nd gear ratios

◼ For railway systems, g is of an order of magnitude 1,02 to  
1,30 for classical train and from 1,30 to 3,50 for rack trains)
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Effective mass

◼ Example: Peugeot 308 1.6 HDi with 5 gear ratios

iboite i gm

1 3,95 13,63 1,5043

2 1,87 7,39 1,1764

3 1,16 4,58 1,0925

4 0,82 3,24 1,0662

5 0,66 2,61 1,0570

idif=3,95
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Velocity as a function of time

◼ We now proceed to time integration of Newton equation.

◼ Time to accelerate form V1 to V2.
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Velocity as a function of time

◼ Time to accelerate from V1 to V2:

◼ Alternatively

Genta Fig 4.20 : 1/F as function of time
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Velocity as a function of time

◼ Criteria for gear ratio up shift 
in order to minimize the 
acceleration time

◼ If two curves intersects each 
other: change the ratio at 
curve intersection

◼ If there is no intersection, 
then it is necessary to push 
the ratio up to maximum 
rotation speed

◼ Lower limit is given by an 
infinite number of gear 
ratios, that is a Continuous 
Variables Transmission (CVT)Genta Fig 4.20 : 1/F as function of time
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Velocity as a function of time

◼ The solution of differential 
equation yields the time t as a 
function of the velocity

◼ The reciprocal function V=g(t) 
requires to invert the relation 

◼ The changes of gear ratio must 
be taken into account
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Velocity as a function of time

G. Genta Fig 4.21
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Distance as a function of the speed

◼ The distance from start can be evaluated by a second 
integration of the Newton equation

◼ Velocity and distance are linked by the kinematic relation

◼ It comes
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Distance as a function of the time

◼ One can eliminate the velocity V 
between the two curves t=f(V) 
and d=h(V)

◼ On gets the distance as a 
function of the time:
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Change of gear ratio

◼ Criteria for changing the gear ratio.

◼ Gear ratio changing is a delicate operation that needs being 
studied in details:

◼ Changing the gear box ratio takes some time

◼ Tractive force is interrupted 

◼ The vehicle is coasting and slows down

◼ For an expert driver

◼ Small time to change the gear

◼ Reduction of the velocity can be estimated by the first order 
approximation
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Change of gear ratio

◼ When several gear change are necessary, the integration needs 
to be carried out by parts

◼ For instance

◼ with
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